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Abstract

We consider a doubly stochastic Markov chain, where the transition intensities are modelled

as diffusion processes. Here we present a forward partial integro-differential equation for the

transition probabilities. This is a generalisation of Kolmogorov’s forward differential equation.

In this setup, we define forward transition rates, generalising the concept of forward rates, e.g.

the forward mortality rate. These models are applicable in e.g. life insurance mathematics, which

is treated in the paper. The results presented follow from the general forward partial integro-

differential equation for stochastic processes, of which the Fokker-Planck differential equation

and Kolmogorov’s forward differential equation are the two most known special cases. We end

the paper by considering the semi-Markov case, which can also be considered a special case of a

general forward partial integro-differential equation.

Keywords: Kolmogorov’s differential equation; doubly stochastic Markov model; stochastic tran-

sition rate; forward transition rate; life insurance; semi-Markov

1 Introduction

In this paper we present Kolmogorov’s forward partial integro-differential equation for

a jump-diffusion. We study the doubly stochastic setup in particular, in which a finite

state jump process has transition rates which are driven by a diffusion process. We

show how this can be applied in life insurance. This motivates the definition of so-

called forward transition rates, which can be written as a conditional expectation of the

stochastic transition rates. With these, the usual results from the classic life insurance
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setup hold, where the forward transition rates replace the usual transition rates, and in

particular the traditional version of Kolmogorov’s forward differential equation holds.

We end the paper by studying the semi-Markov setup, where the transition rates are

not driven by a diffusion, but simply depend on the duration in the current state. Here

Kolmogorov’s forward integro-differential equation is well known, and we show how it is

a special case of the general forward partial integro-differential equation.

We begin this paper by presenting a forward partial integro-differential equation for the

transition probabilities of a general jump-diffusion, which is inspired by Chapter 3.4 in

[9]. A forward partial differential equation exists for the case of a continuous diffusion,

and this is known as the Fokker-Planck differential equation. For the case of a pure jump

process, this is also known, and is called Kolmogorov’s forward differential equation or

the master equation. The more general result presented here we refer to as Kolmogorov’s

forward partial integro-differential equation, and this sets the basis for the rest of the

results.

The main case studied in this paper is the doubly stochastic Markov chain setup. This

consists of a stochastic process Z = (Z(t)))t≥0 taking values in a finite state space

J = {0, 1, . . . , J}. The transition rates of Z are driven by a stochastic diffusion process

X = (X(t))t≥0, and (Z,X) is a Markov chain. We refer to Z as a doubly stochastic

Markov chain. A main result of this paper is that we present Kolmogorov’s forward

differential equation for this setup, as a special case of the general equation. It is a partial

integro-differential equation, and can be considered a generalisation of the traditional

version of Kolmogorov’s forward differential equation. One possible application of this

setup is in life insurance, where Z models the state of a policyholder, e.g. alive, disabled,

dead etc. The transition rates between the different states are not known in the future,

and are then modelled as a diffusion process. The transition probabilities of Z are

essential for calculating the expected future cash flow for such a life insurance policy, and

they can be found using Kolmogorov’s forward partial integro-differential equation. It is

well known that a backward partial differential equation exists, but for calculating e.g.

life insurance cash flows, a forward differential equation is more efficient in practice. For

more on the doubly stochastic setup in life insurance, see [17], [6], [1], and in credit risk,

see e.g. [13]. A special case of the doubly stochastic setup is the classic life insurance

setup, where the transition rates of Z are deterministic. In that case Kolmogorov’s

forward differential equation is well known, and for more on this setup in life insurance,

see e.g. [12] or [18], and for cash flows, see [2].

For the doubly stochastic Markov chain we define so-called forward transition rates,

which is one of the main contributions of this paper. We show that these can be repre-

sented as a conditional expectation of the (stochastic) transition rates. With the forward

transition rates, Kolmogorov’s forward differential equation from the classic life insur-

ance setup holds, which can be used to calculate the transition probabilities of Z directly.
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This generalises the concept of forward rates for doubly stochastic Markov chains, where

the best known example is the forward mortality rate, treated in e.g. [14], [6], [3] and [7].

The concept also relates to the dependent forward rates from [1], and these relations are

studied in the current paper. For more on forward rates, see [5] where they investigate

classes of models where the same forward rates can be used, and [19], which gives a

critical overview of the concept of forward rates in life- and pension insurance. In the

classic life insurance setup where the transition rates are deterministic so Z is a Markov

chain, the forward transition rates simplify and equal the transition rates. To the au-

thors knowledge, a general definition for forward transition rates for doubly stochastic

Markov chains has not been presented before.

Another example of a stochastic process in life insurance is the so-called semi-Markov

setup. Here, Z is a stochastic process on a finite state space, and we define the duration

of Z in the current state as U = (U(t))t≥0. Then, if (Z,U) is a Markov process, Z is a

semi-Markov process. In this case, the transition rates may depend on the duration U.

It is already known that a version of Kolmogorov’s forward differential equation exists for

this case. For more on semi-Markov models see e.g. [2], [4] or [10], and see also [8] where

they refer to the model as a piecewise-deterministic Markov process. In this paper, we

show how Kolmogorov’s forward partial integro-differential equation specialises in the

semi-Markov setup to Kolmogorov’s forward integro-differential equation.

The structure of the paper is as follows. In Section 2, we consider a jump-diffusion

Markov process and find a forward partial integro-differential equation for the transition

probabilities, Kolmogorov’s forward partial integro-differential equation. In Section 3,

we consider the doubly stochastic setup where the transition rates of Z is driven by

a continuous diffusion process X and present Kolmogorov’s forward partial integro-

differential equation for this case. Following this, we define the forward transition rates

in Section 4, and relate them to existing literature. In Section 5, we show how to apply

the doubly stochastic setup and the forward transition rates in life insurance. Finally,

in Section 6, we relate Kolmogorov’s forward partial integro-differential equation to the

semi-Markov setup, and see that we obtain the same integro-differential equation as in

[2].

2 The forward partial integro-differential equation

Let X be a d-dimensional stochastic jump-diffusion in a state space X ⊂ Rd, defined on a

probability space (Ω,F,P). We assume that X is a solution to the stochastic differential

equation,

dX(t) = β(t,X(t))dt+ σ(t,X(t))dW (t) + dJ(t), (2.1)
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for all t ∈ [0, T ]. Throughout the article, T is some finite time-horizon. Let β : R×Rd →
Rd, β ∈ C1,1 and σ : R × Rd → Rd×d, σ ∈ C1,2, where Cn,m is the set of functions that

are n times continuously differentiable in the first argument, and m times continuously

differentiable in the second argument. Let W be a d-dimensional standard Brownian

motion, and define ρ(t, x) = σ(t, x)σ(t, x)>. The jump part of X is J, which has a jump

distribution that only depend on the current time and state of X. We assume existence

of a jump intensity measure, which is denoted µ : Rd × R × Rd → R+. Further assume

that µ(Rd; t, x) is bounded for all t, x, and that the compensated process

t 7→ J(t)−
∫ t

0

∫
(y −X(s−))µ(dy; s,X(s−)) ds (2.2)

is a martingale. Thus, µ(dy; t, x) is the measure of the jump destinations of X, and not

jump sizes.

In (2.2) and in general, when we omit integration bounds we integrate over the whole

domain of the integrand. We use the notation f(x−) = limy↗x f(y), and use τA as the

counting measure on the set A.

Last, we define N as the process counting the number of jumps,

N(t) = #{s ∈ (0, t] | J(s−) 6= J(s)},

and it follows that N has compensator
∫ t
0 µ(Rd; s,X(s−))ds.

The transition probability of X is denoted P , that is, the distribution of X(t) given the

value at some earlier time point. For t ≥ t′ and a Borel set A ⊂ Rd we write

P(X(t) ∈ A | X(t′) = x′) = P (t, A; t′, x′) =

∫
A
P (t,dx; t′, x′).

The transition probability can be described by a forward partial integro-differential equa-

tion (PIDE). This result sets the basis for this article.

Theorem 2.1. (Kolmogorov’s forward PIDE) Assume for i = 1, . . . , d that∫ t

0
βi(s,X(s))f(X(s)) dW (s)

is a martingale, for all f ∈ C1 with compact support. Assume there exists a set X̃ ⊂ X
such that ∂

∂tP (t,dx; t′, x′), ∂
∂xi
P (t,dx; t′, x′) and ∂2

∂xi∂xj
P (t,dx; t′, x′) exist for all i, j =

1, . . . , d, all x ∈ X̃ and t ∈ (t′, T ]. Then the transition probability P of X satisfies, for
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t ∈ (t′, T ], the PIDE,

∂

∂t
P (t, A; t′, x′) = −

∑
i

∫
A

∂

∂xi

(
βi(t, x)P (t,dx; t′, x′)

)
+

1

2

∑
i,j

∫
A

∂2

∂xi∂xj

(
ρij(t, x)P (t,dx; t′, x′)

)
+

∫
A{

(∫
A
µ(dx; t, y)

)
P (t,dy; t′, x′)

−
∫
A

(∫
A{
µ(dy; t, x)

)
P (t,dx; t′, x′),

(2.3)

for any compact Borel set A ⊂ X̃ .

The notation A{ is the complement of the set A.

Remark 2.2. The transition probability trivially satisfies the boundary condition

P (t′, A; t′, x) = 1A(x).

3

This differential equation does not seem to have any agreed name in the literature. If

X is a continuous diffusion process, it is called the Fokker-Planck equation, and if X is

a pure jump process it is often called Kolmogorov’s forward differential equation, and

also the master equation. Since Kolmogorov’s forward differential equation seems to be

the adopted term and the actuarial and financial literature, and we consider this a gen-

eralisation, we refer to it as Kolmogorov’s forward PIDE. For more about Kolmogorov’s

differential equations and applications in life insurance, see e.g. [18]. For more on the

Fokker-Planck and the master equation, see e.g. [9].

The following proof is inspired by the calculations in [9], and the main difference from

there is that in [9] it is implicitly assumed that the transition probability P (t,dx; t′, x′)

has a density with respect to the Lebesgue measure. In this paper, we do not generally

assume existence of a density with respect to the Lebesgue measure. Further, the proof

in [9] is not based on a direct application of Itô’s lemma.

Proof. Let f ∈ C2, and assume that f has support on a compact set A ⊂ X̃ . An
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application of Itô’s lemma yields,

f(X(t))− f(X(t′))

=

∫ t

t′

∑
i

βi(s,X(s))
∂f(X(s))

∂xi
+

1

2

∑
i,j

ρij(s,X(s))
∂2f(X(s))

∂xi∂xj

ds

+

∫ t

t′

∫
(f(y)− f(X(s−)))µ(dy; s,X(s−))ds

+

∫ t

t′

∑
i

βi(s,X(s))
∂f(X(s))

∂xi
dW (s) + J̃(t)− J̃(t′),

(2.4)

where J̃(t) =
∫ t
0 (f(X(s))− f(X(s−))) dN(s)−

∫ t
0

∫
(f(y)− f(X(s−)))µ(dy; s,X(s−))ds.

By the assumption (2.2) we infer that J̃(t) is a martingale. We also have,∫
A
f(x)P (t,dx; t′, x′)− f(x′) = E

[
f(X(t))− f(X(t′))

∣∣X(t′) = x′
]
.

By insertion of (2.4), and using that the last line of (2.4) is a martingale, we obtain∫
A
f(x)P (t,dx; t′, x′)− f(x′)

= E

[ ∫ t

t′

{∑
i

βi(s,X(s))
∂f(X(s))

∂xi
+

1

2

∑
i,j

ρij(s,X(s))
∂2f(X(s))

∂xi∂xj

}
ds

+

∫ t

t′

∫
(f(y)− f(X(s−)))µ(dy; s,X(s−))ds

∣∣∣∣X(t′) = x′
]

=

∫ t

t′

∫
A

{∑
i

βi(s, x)
∂f(x)

∂xi
+

1

2

∑
i,j

ρij(s, x)
∂2f(x)

∂xi∂xj

}
P (s, dx; t′, x′)ds

+

∫ t

t′

∫ ∫
(f(y)− f(x))µ(dy; s, x)P (s, dx; t′, x′)ds.

We differentiate with respect to t, and then apply partial integration to the two first

terms,

∂

∂t

∫
A
f(x)P (t,dx; t′, x′) =

∑
i

∫
A
βi(t, x)

∂f(x)

∂xi
P (t,dx; t′, x′)

+
1

2

∑
i,j

∫
A
ρij(t, x)

∂2f(x)

∂xi∂xj
P (t,dx; t′, x′)

+

∫ ∫
(f(y)− f(x))µ(dy; t, x)P (t,dx; t′, x′)

6



= −
∑
i

∫
A
f(x)

∂

∂xi

(
βi(t, x)P (t,dx; t′, x′)

)
+

1

2

∑
i,j

∫
A
f(x)

∂2

∂xi∂xj

(
ρij(t, x)P (t,dx; t′, x′)

)
+

∫ ∫
(f(y)− f(x))µ(dy; t, x)P (t,dx; t′, x′).

The boundary terms from the partial integration vanishes due to the fact that f(x) = 0

and ∂
∂xi
f(x) = 0 on the boundary of A, since f is C2.

Let fn ∈ C2 be a series of uniformly bounded functions with compact support in X̃ , such

that fn → 1A for n→∞. This yields the result.

In (2.3) and in general, we differentiate the integrator of an integral, e.g. in
∫
A

∂
∂xi

(βi(t, x)P (t,dx; t′, x′)). This notation is adopted to be able to write a general expression,

where we do not need to assume a density for P with respect to another measure. For a

specific model for X, one would typically determine a density and reference measure so

P can be written in terms of these. This reference measure could be the Lebesgue or the

counting measure on some set, or a mixture. This is for example the case in Corollary

3.2.

If µ(Rd; t, x) = 0 for all t, x, the process X is continuous. In that case, (2.3) reduces to

an integral version of the well-known Fokker-Planck equation.

∂

∂t
P (t, A; t′, x′) = −

∑
i

∫
A

∂

∂xi

(
βi(t, x)P (t,dx; t′, x′)

)
+

1

2

∑
i,j

∫
A

∂2

∂xi∂xj

(
ρij(t, x)P (t,dx; t′, x′)

)
.

In the opposite case, where β(t, x) = 0 and σ(t, x) = 0 for all t, x, the process X is a

pure jump process. In that case, (2.3) reduces to an integral version of Kolmogorov’s

forward differential equation, also known as the master equation,

∂

∂t
P (t, A; t′, x′) =

∫
A{

(∫
A
µ(dx; t, y)

)
P (t,dy; t′, x′)

−
∫
A

(∫
A{
µ(dy; t, x)

)
P (t,dx; t′, x′),

Assuming that a density exists with respect to some measure, one can differentiate and

obtain the Fokker-Planck respectively Kolmogorov’s forward differential equation.

In particular the jump part of (2.3) is easily interpreted. The positive term leads to an

increasing probability, and it is the probability of being somewhere in the complement of
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A and making a jump inside A. The negative term leads to a decreasing probability, and

it is the probability of being somewhere in A, and making a jump to the complement of

A. Jumps solely inside A or A{ does not affect the probability.

3 The doubly stochastic Markov chain setup

In this section we consider the doubly stochastic Markov chain setup, which can be

considered a special case of the stochastic process X from (2.1). We let a set of stochastic

rates be modelled as a continuous diffusion process. Conditional on these, we create

a Markov chain with these transition rates. For simplicity we restrict to the case of

continuous transition rates.

Let a finite state space J = {0, . . . , J} be given. For each k, ` ∈ J , where k 6= `, we

associate a transition rate t 7→ µk`(t,X(t)). Here, X is a d-dimensional diffusion process

satisfying the stochastic differential equation

dX(t) = β(t,X(t))dt+ σ(t,X(t))dW (t),

where W is a d-dimensional diffusion process and β and σ are as in Section 2. Thus,

the transition rates µk` are stochastic.

Define now the stochastic process Z on J , and assume it is cádlág. Conditional on X,

we let Z be a Markov chain, with transition rates µk`(t,X(t)). Define the filtrations

generated by X respectively Z as FX(t) = σ(X(s)|s ≤ t) and FZ(t) = σ(Z(s)|s ≤ t).

Define also the larger filtration F(t) = FX(t) ∨ FZ(t). Let Nk` be a counting process

that counts the number of jumps from state k to state `,

Nk`(t) = #{s ≤ t|Z(s−) = k, Z(s) = `}. (3.1)

The assumption that Z is a Markov chain with stochastic transition rates µk`(t,X(t))

means, that conditional on X, the compensated process

Nk`(t)−
∫ t

0
1(Z(s−)=k)µk`(s,X(s)) ds (3.2)

is a martingale. That is, it is a martingale with respect to the filtration FX(T )∨FZ(t).

In particular, it is straightforward to verify that (3.2) is also a martingale unconditionally

on X, that is, with respect to the filtration F(t).

We are interested in finding transition probabilities for the doubly stochastic Markov

chain Z(t),

pk`(t; t
′, x) = P (Z(t) = ` | Z(t′) = k,X(t′) = x). (3.3)
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These are dependent on X(t′); we think of time t′ as now, and thus X(t′) is known. We

find this transition probability by first finding the transition probability for the combined

process (Z(t), X(t)). Thus, let P (t, k, A; t′, k′, x′) denote the transition probability of

(Z(t), X(t)) conditional on (Z(t′), X(t′)) = (k′, x′). Considering the (d+ 1)-dimensional

process (Z(t), X(t)) as a special case of (2.1), we obtain the following result.

Corollary 3.1. (Kolmogorov’s forward PIDE for the doubly stochastic setup) Assume

that ∫ t

0
βi(s,X(s))f(X(s)) dW (s)

is a martingale for all f ∈ C1 with compact support, and that ∂
∂tP (t, k, dx; t′, k′, x′),

∂
∂xi
P (t, k, dx; t′, k′, x′) and ∂2

∂xi∂xj
P (t, k, dx; t′, k′, x′) exist. Then the transition probabil-

ity P (t, k, A; t′, k′, x′) for k ∈ J and a compact Borel-set A ⊂ Rd satisfy the forward

PIDE

∂

∂t
P (t, k, A; t′, k′, x′) = −

∑
i

∫
A

∂

∂xi

(
βi(t, x)P (t, k, dx; t′, k′, x′)

)
+

1

2

∑
i,j

∫
A

∂2

∂xi∂xj

(
ρij(t, x)P (t, k, dx; t′, k′, x′)

)
+
∑
`: 6̀=k

∫
A
µ`k(t, x)P (t, `,dx; t′, k′, x′)

−
∫
A

∑
`:`6=k

µk`(t, x)P (t, k, dx; t′, k′, x′),

(3.4)

subject to the boundary condition P (t′, k, A; t′, k′, x) = 1(k=k′)1A(x).

Proof. We have the dynamics

d

[
Z(t)

X(t)

]
=

[
0

β(t,X(t))

]
dt+

[
0 0

0 σ(t,X(t))

]
dW̃ (t) +

[
dJ(t)

0

]
,

for W̃ (t) = (Ŵ (t),W (t)), where Ŵ (t) is an adapted standard Brownian motion. In

particular, the jump measure µ̃(d(`, y); t, (k, x)) of this process is,

µ̃(d(`, y); t, (k, x)) = µk`(t, x) · d
(
τJ\{k}(`)⊗ τ{x}(y)

)
.

Now the result follows from Theorem 2.1 applied to the process (Z(t), X(t)).

Corollary 3.2. Assume Corollary 3.1 holds and that a density with respect to the

Lebesgue measure exists,

P (t, k, dx; t′, k′, x′) = p(t, k, x; t′, k′, x′) dx. (3.5)
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Then the density satisfies, for t > t′, the PDE

∂

∂t
p(t, k, x; t′, k′, x′) = −

d∑
i=1

∂

∂xi

(
βk(t, x)p(t, k, x; t′, k′, x′)

)
+

1

2

d∑
i,j=1

∂2

∂xi∂xj

(
ρij(t, x)p(t, k, x; t′, k′, x′)

)
+
∑
`;`6=k

µ`k(t, x)p(t, `, x; t′, k′, x′)

−
∑
`;`6=k

µk`(t, x)p(t, k, x; t′, k′, x′),

(3.6)

subject to the boundary condition p(t′, k, x; t′, k′, x′) = 1(k=k′)1(x=x′).

Assuming we have solved the PIDE (3.4) or the PDE (3.6), we have the transition

probability for the process (Z(t), X(t)). If we are interested in the transition probabilities

of Z(t) only, (3.3), we can integrate over the underlying state X(t),

pk′k(t; t
′, x′) = P (t, k,Rd; t′, k′, x′) =

∫
p(t, k, x; t′, k′, x′) dx. (3.7)

Corollary 3.2 is a generalisation of Kolmogorov’s forward differential equation. If the

transition rates are deterministic, which without loss of generality can be characterised

as X being constant, we have that β(t, x) = 0 and σ(t, x) = 0. In that case, (3.6)

simplifies to Kolmogorov’s forward differential equation,

∂

∂t
p(t, k; t′, k′) =

∑
`∈J\{k}

(
µ`k(t)p(t, `; t

′, k′)− µk`(t)p(t, k; t′, k′)
)
.

Here we removed x, y from the notation in p(s, j, y; t, i, x) and µk`(t, x).

3.1 Backward partial differential equation

It is well known that a backward PDE exists for the transition probability; since

t 7→ E
[
1(Z(s)=k)

∣∣F(t)
]

=
∑
`

1(Z(t)=`)p`k(s; t,X(t)),

is a martingale, we can apply Itô’s lemma and set the drift equal to zero. This yields a

PDE in t, x, ` for p`k(s; t, x), together with the boundary conditions p`k(s; s, x) = 1(`=k).
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Proposition 3.3. (Kolmogorov’s backward PDE) For ` ∈ J , the transition probabilities

p`k(s; t, x) satisfy the backward PDE

∂

∂t
p`k(s; t, x) = −

d∑
i=1

βi(t, x)
∂

∂xi
p`k(s; t, x)− 1

2

d∑
i,j=1

ρij(t, x)
∂2

∂xi∂xj
p`k(s; t, x)

−
∑

m;m 6=`
µ`m(t, x) (pmk(s; t, x)− p`k(s; t, x)) ,

(3.8)

subject to the boundary condition p`k(s; s, x) = 1(`=k).

If the transition rates are deterministic, which can be modelled by setting β(t, x) = 0

and ρ(t, x) = 0, the first two terms of (3.8) disappear, and we are left with Kolmogorov’s

well known backward differential equation.

With the results presented, we have two ways of calculating p`k(s; t, x). Either, we solve

the backward PDE in Proposition 3.3, or we solve the forward PDE from Corollary 3.2

and integrate over the transition rates as in (3.7). In Section 5 about life insurance cash

flows, we see that we need to find p`k(s; t, x) for fixed `, t, x and varying k, s. In that

case, the forward PDE seems preferable, as we only need to solve it once. If we use the

backward PDE, we need to solve it for every fixed pair of k, s.

4 Forward transition rates

In the doubly stochastic setup, a particular quantity of interest is the transition proba-

bilities of Z, from (3.3),

pk′k(t; t
′, x′) =

∫
p(t, k, x; t′, k′, x′) dx.

They are used if we are only interested in Z and not the underlying stochastic process

driving the transition rates, e.g. for valuation of life insurance contracts, see Section 5.

By the definition of so-called forward transition rates, we are able to present a differential

equation for this transition probability directly. The differential equation is identical to

Kolmogorov’s forward differential equation which is used when the transition rates are

deterministic. We define the forward transition rate as the instantaneous probability of

a transition from k to ` at time t. This is dependent on the state of (Z,X) at the present

time t′.

Definition 4.1. Given it exists, the forward transition rate fk`(t; t
′) at time t′ is defined

as

fk`(t; t
′) = lim

h↘0

1

h
P
(
Z(t+ h) = `

∣∣Z(t) = k, (Z,X)(t′)
)
.
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Remark 4.2. The forward transition rate at time t′ is (Z,X)(t′)-measurable. We may

condition on the exact values of (Z,X)(t′) and write

fk`(t; t
′, k′, x′) = lim

h↘0

1

h
P
(
Z(t+ h) = `

∣∣Z(t) = k, (Z,X)(t′) = (k′, x′)
)
.

Then fk`(t; t
′, Z(t′), X(t′)) = fk`(t, t

′). 3

The classic setup, where Z is itself Markov and independent of X, is a special case of

the doubly stochastic setup considered here. In that case, by independence, we see that

X disappears from the conditioning in Definition 4.1, and that Z(t′) disappears as well,

due to the Markov property. This is exactly the definition of the transition rate in the

classic setup, and Definition 4.1 is a generalisation of the transition rates to the doubly

stochastic setup.

Assuming that the transition rates exist, we can represent the forward transition rates

as an expectation of the transition rates.

Lemma 4.3. If the transition rates µk`(t,X(t)) exist, then

fk`(t; t
′, k′, x′) = E

[
µk`(t,X(t))|Z(t) = k, (Z,X)(t′) = (k′, x′)

]
.

Proof. From Definition 4.1 and Remark 4.2, we condition on X and interchange expec-

tation and limits,

fk`(t; t
′) = lim

h↘0

1

h
P
(
Z(t+ h) = `

∣∣Z(t) = k, (Z,X)(t′)
)

= E

[
lim
h↘0

1

h
P
(
Z(t+ h) = `

∣∣X, Z(t) = k, (Z,X)(t′)
) ∣∣∣∣Z(t) = k, (Z,X)(t′)

]
= E

[
lim
h↘0

1

h
P (Z(t+ h) = ` |X, Z(t) = k )

∣∣∣∣Z(t) = k, (Z,X)(t′)

]
= E

[
µk`(t,X(t))|Z(t) = k, (Z,X)(t′)

]
,

where we at third line used that conditional on X, Z is a Markov chain, and at the

fourth line we used the definition of the transition rate of a Markov chain.

The transition rates µk`(t,X(t)) determine the behaviour of Z(t) in the next infinitesimal

timespan, and this is dependent on X(t). If we at present time t′ are interested in the

behaviour of Z(t) at the future time point t, we can average out the dependence on X(t),

and then we obtain the forward transition rate fk`(t; t
′). These forward rates determine

the expected behaviour of Z(t) conditional on the present state at time t′, and with this

we can write Kolmogorov’s forward differential equation on the usual form, with the

forward transition rates in place of the transition rates.
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Theorem 4.4. Assume the forward transition rates of Definition 4.1 exist. Then the

transition probabilities pk′k(t; t
′, x′) for Z satisfy the differential equation

d

dt
pk′k(t; t

′, x′) =
∑
`; 6̀=k

f`k(t; t
′, k′, x′)pk′`(t; t

′, x′)−
∑
`;`6=k

fk`(t; t
′, k′, x′)pk′k(t; t

′, x′),

(4.1)

with boundary conditions pk′k(t
′; t′, x′) = 1{k′=k}.

Proof. We apply the Chapman-Kolmogorov equation and rearrange,

pk′k(t+ h; t′, x′)

=
∑
`

pk′`(t; t
′, x′) P

(
Z(t+ h) = k

∣∣Z(t) = `, (Z,X)(t′) = (k′, x′)
)

=
∑
`;` 6=k

pk′`(t; t
′, x′) P

(
Z(t+ h) = k

∣∣Z(t) = `, (Z,X)(t′) = (k′, x′)
)

+ pk′k(t; t
′, x′)

1−
∑

m;m6=k
P
(
Z(t+ h) = m

∣∣Z(t) = k, (Z,X)(t′) = (k′, x′)
) .

By multiplication with 1
h ,

pk′k(t+ h; t′, x′)− pk′k(t; t′, x′)
h

=
∑
`;` 6=k

pk′`(t; t
′, x′)

1

h
P
(
Z(t+ h) = k

∣∣Z(t) = `, (Z,X)(t′) = (k′, x′)
)

− pk′k(t; t′, x′)
∑

m;m6=k

1

h
P
(
Z(t+ h) = m

∣∣Z(t) = k, (Z,X)(t′) = (k′, x′)
)
.

By letting h↘ 0 and applying Definition 4.1, the result is obtained.

We can interpret the forward transition rate fk`(t; t
′, k′, x′) and the differential equation

(4.1). At present time t′, use the forward transition rates fk`(t; t
′, k′, x′) to define a new

Markov chain Z̃(t′,k′,x′), with fk`(t; t
′, k′, x′) as its deterministic transition rates, and with

starting value Z̃(t′,k′,x′)(t′) = k′. With this construction, we know from Theorem 4.4 that

Z(t) and Z̃(t′,k′,x′)(t) equals in distribution in the conditional case where (Z,X)(t′) =

(k′, x′). To be precise,

P(Z̃(t′,k′,x′)(t) = k | Z̃(t′,k′,x′)(t′) = k′) = P(Z(t) = k | (Z,X)(t′) = (k′, x′)), (4.2)

for all t ≥ t′ and k ∈ J , where t′, k′, x′ is fixed. This can for example be utilised to

calculate expectations of functions of Z(t), by replacing with Z̃(t′,k′,x′)(t). For example,

13



let g be some function, then

E
[
g(Z(t))

∣∣(Z,X)(t′) = (k′, x′)
]

= E
[
g
(
Z̃(t′,k′,x′)(t)

) ∣∣∣Z̃(t′,k′,x′)(t′) = k′
]

=
∑
k

g(k)pk′k(t; t
′, x′).

Theorem 4.4 yields the transition probabilities pk′k(t; t
′, x′) from a simple differential

equation, and thus, in the conditional case where (Z,X)(t′) = (k′, x′) and we know the

associated forward transition rates, this will significantly reduce the complexity of the

calculation.

The definition of the forward rates is useful beyond Theorem 4.4, as we see in Corollary

5.4 in Section 5 about life insurance.

4.1 Forward rates in the literature

Forward rates for doubly stochastic Markov chains have been discussed and treated in

the literature since [14] introduced the concept of a forward mortality rate, and the

forward mortality rate is the primary example of a forward transition rate. To the

authors knowledge, a general definition for doubly stochastic Markov chains has not

before been introduced. In this section, we briefly relate Definition 4.1 above to existing

literature on forward rates.

The forward mortality rate is defined in the setup of a 2-state survival model with state

space J = {0, 1}, where the only non-zero transition rate is from state 0 to 1, and this

transition rate is simply denoted µ(t,X(t)). State 0 corresponds to being alive, and

state 1 corresponds to being dead, and we refer to µ(t,X(t)) as the mortality rate. The

forward mortality rate is defined as the function g(t; t′, x′) that satisfies

p00(t; t
′, x′) = E

[
e−

∫ t
t′ µ(s,X(s))ds

∣∣∣X(t′) = x′, Z(t′) = 0
]

= e−
∫ t
t′ g(s;t

′,x′)ds. (4.3)

In the literature, the measure used in (4.3) to define the forward mortality rate is a

market consistent measure, and not necessarily the physical measure. In this paper

we omit the discussion about which measure we operate with (and omit it from the

notation), and simple note that for applications it is important to distinguish between

relevant measures. For more on market consistent measures and market values, see [16].

The definition of the forward mortality rate (4.3) originates from [14], and has since been

used in e.g. [6], [3] and [7]. The forward transition rate from Definition 4.1 is identical

to the forward mortality rate in this setup. The quantity (4.3) can be differentiated on

both sides to obtain

d

dt
p00(t; t

′, x′) = −g(t; t′, x′)p00(t; t
′, x′).

14



By a comparison with (4.1), which simplifies in the simple 2-state setup, we can recognise

the forward mortality rate as the forward transition rate in our setup, g(t; t′, x′) =

f01(t; t
′, x′). Further, using Lemma 4.3, we can represent the forward mortality rate as

the expected mortality rate conditionally on being alive,

g(t; t′, x′) = E
[
µ(t,X(t))

∣∣Z(t) = 0, X(t′) = x′
]
.

There has been attempts at generalising the forward rates to more complex models than

the 2-state survival model, for example if there are several dependent transition rates,

or if the transition rate is dependent on some other stochastic process, e.g. a stochastic

interest rate, see [15], [1] and [19]. Also, as is investigated in [5], the forward mortality

rate as defined in (4.3) cannot be directly applied for more general models than the

2-state survival model. Definition 4.1 is more general, and while it specialises to the

forward mortality rate in the 2-state model, it leads to more general forward rates in

other models.

In this paper, only transition rates are considered, so any dependence on e.g. an interest

rate is out of the scope of this treatment and postponed for further research. In [1], so-

called dependent forward rates are defined. Consider the survival model with multiple

causes of of death. The state space is J = {0, . . . , J}, where state 0 is alive, and state

k > 0 is interpreted as dead by cause k. Thus, the only non-zero transition rates are

those out of state 0, thus all other states are absorbing. In this setup, the dependent

forward rates are defined as the quantities g0k(t; t
′, x′) satisfying

p00(t; t
′, x′) = E

[
e−

∫ t
t′
∑J

`=1 µ0`(s,X(s)) ds
∣∣∣X(t′) = x′, Z(t′) = 0

]
= e−

∫ t
t′
∑J

`=1 g0`(s;t
′,x′) ds,

(4.4)

p0k(t; t
′, x′) = E

[∫ t

t′
e−

∫ s
t′
∑J

`=1 µ0`(u,X(u)) duµ0k(s,X(s)) ds

∣∣∣∣X(t′) = x′, Z(t′) = 0

]
=

∫ t

t′
e−

∫ s
t′
∑J

`=1 g0`(u;t
′,x′) dug0k(s; t

′, x′) ds.

(4.5)

Similar to the forward mortality rate, the dependent forward rates are defined by a

replacement argument: It is the quantities that allow us to write the transition prob-

abilities with the usual formulae as in the deterministic setup, and thereby get rid of

the expectation. Analogously to above, one can differentiate p00(t; t
′, x′) and p0k(t; t

′, x′)

and obtain differential equations for these transition probabilities. Then, one sees from

(4.1) that the forward rates from Definition 4.1 specialises to the dependent forward

rates in this setup. In particular, we can also represent the dependent forward rates as

the conditional expectation of the transition rates, conditional on being alive,

g0k(t; t
′, x′) = E

[
µ0k(t,X(t))

∣∣Z(t) = 0, X(t′) = x′
]
.
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In [19], the concept of forward transition rates is examined and discussed. An overview

is given, and related to the forward interest rate, from which the definition of the forward

mortality rate is motivated, and a sceptical view is taken on the usefulness of forward

rates. It is argued that in the general doubly stochastic setup, it does not seem possible

to obtain forward transition rates that is defined in a meaningful way. It is the belief

of the author, that to a certain extent, Definition 4.1 does exactly this, which is further

supported by Lemma 4.3 and Theorem 4.4. It shall be noted, that the forward transition

rates presented in this paper do not encompass dependence on e.g. the interest rate,

which can be of interest within e.g. life insurance or credit risk.

4.2 Calculation of the forward rates

The forward differential equation presented in Theorem 4.4 does seem appealing for

calculation of the transition probabilities, when compared with Corollary 3.2. However,

to solve it one must first find the forward transition rates, which is not an easy task in

practice. In certain simple models, it is however possible to find the forward transition

rates. If an affine setup is considered, that is, where X is an affine process, the forward

mortality rate from (4.3) can be found as a solution to certain ordinary differential

equations, see e.g. [6] or [1]. Also, as is shown in [1], this result generalises to the case

of the dependent forward rates from (4.4) and (4.5). The definition of the dependent

forward rates indeed originate from the affine setup, where it is possible to calculate

these.

In more complicated setups, it is not obvious how to calculate the forward transition

rates and thereby gain a computational advantage from Theorem 4.4. Thus, Corollary

3.2 so far seems like the better choice for an actual calculation. It shall be noted,

that if one solves (3.6) from Corollary 3.2, it is straightforward though to calculate the

forward transition rates, since the distribution obtained from solving this is sufficient

for calculating the forward rates by Lemma 4.3. This can be useful, for example for

calculation of the cash flow in life insurance mathematics, using Corollary 5.4 below.

Even if the computational advantages of using the forward transition rates are not ob-

vious in general models, the author believes that the forward transition rates are an in-

teresting contribution towards understanding the structure of doubly stochastic Markov

chains, as they provide a generalisation of the forward transition rates seen in the liter-

ature.
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5 Life insurance cash flows

Let a finite state space J be given, where the states could be alive, disabled, dead, or

similar. Then, let the doubly stochastic Markov chain Z from Section 3 describe the

state of an insured in this state space. To each state k we associate a continuously paid

payment rate bk(t), and to each transition we associate a payment, bk`(t). We assume

both are continuous functions. The payments of the contract, accumulated until time t,

is then described by the payment process B(t), satisfying

dB(t) =
∑
k∈J

1(Z(t)=k)bk(t)dt+
∑
k,`∈J
k 6=`

bk`(t)dNk`(t).

We assume that all payments occur before the finite time horizon T , i.e. that bk(s) =

bk`(s) = 0 for all k, ` and s ≥ T . This setup constitutes our modelling of the life insurance

contract. Here we let bk and bk` be deterministic functions, but we later discuss the

straightforward extension to dependence on the underlying stochastic process X.

We define the cash flow associated with this contract, as the expected payments.

Definition 5.1. The accumulated cash flow at time t′ conditional on Z(t′) = k′ and

X(t′) = x′ is the function,

Ak′(t; t
′, x′) = E

[
B(t)−B(t′)

∣∣Z(t′) = k′, X(t′) = x′
]
.

Furthermore, if Ak′(t; t
′, x′) has a density with respect to the Lebesgue measure,

Ak′(dt; t
′, x′) = ak′(t; t

′, x′) dt,

we refer to ak′(t; t
′, x′) as the cash flow.

Remark 5.2. In the traditional life insurance setup, single payments can also happen

at deterministic time points. In that case, one allows the cash flow to have a density

with respect to a mixture between the Lebesgue measure and a counting measure. An

extension to this more general case is straightforward, but complicates the notation and

is thus omitted from the present article. 3

One can now show the following result; a proof in the semi-Markov setup is given in [2],

and the proof in the present setup is essentially identical.

Proposition 5.3. The cash flow exists and is given by,

ak′(t; t
′, x′) =

∑
k∈J

∫
X
P (t, k, dx; t′, k′, x′)

(
bk(t) +

∑
`∈J
`6=k

µk`(t, x)bk`(t)

)
. (5.1)
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The cash flow can also be represented as a function of the transition probabilities for Z

and the forward transition rates.

Corollary 5.4. The cash flow has representation

ak′(t; t
′, x′) =

∑
k∈J

pk′k(t; t
′, x′)

(
bk(t) +

∑
`∈J
`6=k

fk`(t; t
′, k′, x′)bk`(t)

)
. (5.2)

Proof. We have that P (t, k, dx; t′, k′, x′)dτJ (k) is the probability measure of (Z,X)(t)

conditional on (Z,X)(t′) = (k′, x′), and that pk′k(t; t
′, x′)dτJ (k) is the corresponding

marginal probability measure of Z(t). Thus,

P (t, k, dx; t′, k′, x′)

pk′k(t; t′, x′)

is the conditional probability measure of X(t) given both Z(t) = k and (Z,X)(t′) =

(k′, x′). Using this, we find∫
X
µkl(t, x)P (t, k, dx; t′, k′, x′)

= pk′k(t; t
′, x′)

∫
X
µkl(t, x)

P (t, k, dx; t′, k′, x′)

pk′k(t; t′, x′)

= pk′k(t; t
′, x′) E

[
µkl(t,X(t))

∣∣Z(t) = k, (Z,X)(t′) = (k′, x′)
]

= pk′k(t; t
′, x′)fkl(t; t

′, k′, x′),

where we in the last equality applied Lemma 4.3. Insertion into Proposition 5.3 yields

the result.

In the Corollary, the integral from formula (5.1) disappears, and we recognise formula

(5.2) as the cash flow formula from the classic setup with deterministic transition rates.

Indeed, if the transition rates are deterministic, µk`(t, x) does not depend on x and the

integral disappears from (5.1), while also the transition rates equal the forward transition

rates. Thus, in this case (5.1) and (5.2) equal.

Given some continuously compounded interest rate r(t), which we assume to be deter-

ministic, we can calculate the expected present value at time t, conditional on Z(t) = k.

This is defined as,

Vk(t, x) = E

[∫ T

t
e−

∫ s
t r(w)dwdB(s)

∣∣∣∣Z(t) = k,X(t) = x

]
.

One can show that the expected present value is simply the sum of the discounted cash

flow, which we state in the following proposition.
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Proposition 5.5. If r is deterministic, the expected present value at time t, conditional

on Z(t) = k and X(t) = x is given as

Vk(t, x) =

∫ T

t
e−

∫ s
t r(w)dwak(s; t, x)ds.

The main objective of the actuary is to calculate the expected present value, and this

can be done e.g. by calculating the cash flow first, and then discounting it, as described

above. Another possibility is to calculate it directly, since one can show that Vk(t, x)

is the solution of a backward PDE, similar in structure to the backward PDE for the

transition probability, (3.8), see e.g. [7]. However, one is often interested in the cash flow,

since it is convenient for an analysis of the interest rate risk in practice. For example,

if one wants to calculate the expected present value with different interest rates, it

is advantageous to first calculate the cash flows, which are independent of the interest

rate. In particular, if a large portfolio of insurance contracts is considered, the cash flows

can be accumulated to a single cash flow for the portfolio, which are easily discounted.

For calculation of the cash flow, one needs the transition probabilities, which can be

calculated with Corollary 3.2.

Remark 5.6. Mathematically it is straightforward to extend the current setup such that

the payment functions bk and bk` may depend on the value of the underlying process X,

and we can write bk(t, x) and bk`(t, x). In that case, the cash flow (5.1) would be

ak′(t; t
′, x′) =

∑
k∈J

∫
X
P (t, k, dx; t′, k′, x′)

(
bk(t, x) +

∑
`∈J
`6=k

µk`(t, x)bk`(t, x)

)
.

Note that it is not possible write the cash flow as a function of the forward transition

rates as in Corollary 5.4. 3

Remark 5.7. In this section, we assumed a deterministic interest rate r(t), however a

stochastic interest rate is easily handled if it is independent of the underlying stochastic

process X and Z. For more on stochastic interest rates in life insurance, see e.g. [16] and

references therein. 3

6 Semi-Markov models in life insurance

If we extend the classic life insurance setup, where the transition rates are deterministic,

to allow the transition rates and the payment functions to depend on the time spent in

the current state, we have introduced duration dependence in the setup. In this case,

Z is a semi-Markov process, and this class of models are popular in e.g. life insurance.

An example of such a model is a disability model with recovery, where the recovery rate
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and the mortality as disabled might decrease as a function of the time spent as disabled.

For a treatment of this model, see [2] and references therein.

We construct the semi-Markov model and show that the semi-Markov process is a special

case of the process in Section 2. This can be used to present Theorem 2.1 for the semi-

Markov process, and in this case it becomes an integro-differential equation. This result

is also presented in [2], but the proof of the result is different.

Let Z be a stochastic process on a finite state space J . Define U as the duration in the

current state,

U(t) = sup {s ∈ [0, t] | Z(w) = Z(t), w ∈ [t− s, t]} .

We assume that (Z,U) is a Markov process. The process (Z,U) may jump, and the

pure jump part can be written as

J(t) =
∑
s≤t

[
∆Z(s)

∆U(s)

]
.

We denote the jump measure of J(t), as defined in (2.2), by µ̃(d(`, v); t, (k, u)), and it

has a density with respect to a counting measure,

µ̃(d(`, v); t, (k, u)) = µk`(t, u) · d
(
τJ\{k}(`)⊗ τ{0}(v)

)
.

Here, J(t) is the jump sizes, and µ̃((`, v); t, (k, u)) is interpreted as the instantaneous

probability that if we are in state k with duration u, we make a jump to state ` and

have duration v. By the definition of U we always jump to duration 0, so if v 6= 0 the

density is zero. We interpret µk`(t, u) as the transition rate of Z, and it can be shown

to satisfy the relation

µk`(t, u) = lim
δ↘0

1

δ
P (Z(t+ δ) = `|Z(t) = k, U(t) = u) ,

for k 6= `. We interpret this as the instantaneous probability of a jump of Z from state

k to state `, if we are at time t with duration u.

With Nk`(t) given by (3.1), we can characterise U(t) as

dU(t) = 1dt− U(t−)
∑
k,`∈J
k 6=`

dNk`(t).

The first term on the right hand side is the constant increase of U(t) with slope 1, and

the second term states that whenever Z jumps, U jumps to zero. We remark that the

state space of U(s) is [0, s], and, conditional on U(t) = u, the state space for U(s), s ≥ t
is [0, u+ s− t].
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We define the transition probability

P (t, k, u; t′, k′, u′) = P(Z(t) = k, U(t) ≤ u | Z(t′) = k′, U(t′) = u′).

We specialise Theorem 2.1 to this semi-Markov setup. Because of the structure of

the process, in particular the fact that the duration process increases identically as

time almost everywhere and possess no diffusion term, we can write it as an integro-

differential equation (IDE). We note, that since ∂
∂uP (t, k, u; t′, k′, u′) does not exist for

all u, the result is not a direct special case of Theorem 2.1.

Theorem 6.1. The transition probability P (t, k, u; t′, k′, u′), for t ≥ t′, k ∈ J and

u ∈ [0, u′ + t− t′] satisfies the forward IDE(
∂

∂t
+

∂

∂u

)
P (t, k, u; t′, k′, u′) =

∑
`∈J
` 6=k

∫ u′+t−t′

0
µ`k(t, v)P (t, `,dv; t′, k′, u′)

−
∫ u

0

∑
`∈J
`6=k

µk`(t, v)P (t, k, dv; t′, k′, u′),

(6.1)

subject to the boundary conditions P (t′, k, u; t′, k′, u′) = 1(k=k′)1(u′≤u) and, for t > t′,

P (t, k, 0; t′, k′, u′) = 0.

The differential equation can be interpreted both as a partial integro-differential equa-

tion, and as an ordinary integro-differential equation. The latter interpretation makes it

easy to solve in practice, and for details on this see [2], where an algorithm is explained.

The theorem is proven in [2], however, we give an outline of how to prove it with the

tools presented in Section 2. Theorem 2.1 yields the IDE on the interior of the domain,

so what is left is to make sure the IDE also holds on the boundary.

For the proof and subsequent results, we introduce the following notation,

pkk(t; t
′, u′) = P(Z(t) = k, U(t) = u′ + t− t′ | Z(t′) = k, U(t′) = u′)

= exp

{
−
∫ t−t′

0

∑
`∈J
`6=k

µk`(t
′ + w, u′ + w)dw

}
. (6.2)

This quantity is the probability of staying in state k from time t′ with duration u′ until

time t. It is well known that it has the above expression, see e.g. [11].

Proof. (Outline) The first boundary condition follows directly from the definition of the

transition probability. Since, for any t, the probability that a jump occurs exactly at

time t can be shown to equal 0, the probability that the duration is equal to zero is zero,

for all t. This yields the second boundary condition.
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We first claim that one can show, that on the open set

{(t, u) | t ∈ (t′, T ), u ∈ (0, u′ + t− t′)},

the partial derivatives ∂
∂tP (t, k, u; t′, k′, u′) and ∂

∂uP (t, k, u; t′, k′, u′) exist. This holds,

since probability mass on that set originates from jumps. Thus, from Theorem 2.1, the

result holds on this set.

Since P (t, k, u; t′, k′, u′) is right-continuous in u by definition, the result holds for u = 0.

For u = u′ + t− t′, note that

P (t, k, u′ + t− t′; t′, k′, u′) = P (t, k, u′ + t− t′; t′, k′, u′)− P (t, k, u′ + t− t′ − δ; t′, k′, u′)
+ P (t, k, u′ + t− t′ − δ; t′, k′, u′),

and let δ ↘ 0 to obtain

P (t, k, u′ + t− t′; t′, k′, u′) = P(Z(t) = k, U(t) = u′ + t− t′ | Z(t′) = k′, U(t′) = u′)

+ P (t, k, (u′ + t− t′)−; t′, k′, u′).

(6.3)

The second term on the right hand side of (6.3) satisfies (6.1). The first term on the

right hand side is, for k = k′, the probability of staying in state k′ from time t′ to t, and

from (6.2) we know that this probability is of the form

P(Z(t) = k, U(t) = u′ + t− t′ | Z(t′) = k′, U(t′) = u′) = 1(k=k′)pkk(t; t
′, u′).

Applying ∂
∂t + ∂

∂u to both sides, we find that this functions satisfies a linear partial

differential equation of the form (6.1).

Since both terms on the right hand side of (6.3) satisfy (6.1), which is linear, we use

the fact that if two functions satisfy the same linear IDE, each with their own boundary

condition, the sum of of these functions satisfy the same linear IDE, with the boundary

condition being the sum of the two boundary conditions. From this we conclude that

the whole of (6.3) satisfy (6.1). Thus, the result holds for all u ∈ [0, u′ + t − t′] and

t ≥ t′.

We can partly solve the forward IDE, and obtain the following integral equation, which

is essentially a differentiated version of equation (4.7) in [11].

Proposition 6.2. The transition density p(t, k, u; t′, k′, u′), for k ∈ J , u ∈ [0, u′+ t− t′]
exists with respect to a mixture of the Lebesgue measure and a point measure. For fixed

t,

P (t, A,B; t′, k′, u′) =
∑
k∈A

∫
B
p(t, k, u; t′, k′, u′)

(
du+ dτ{u′+t−t′}(u)

)
.

The density is given by
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• for t− t′ > u, the integral equation

p(t, k, u; t′, k′, u′) =
∑
`∈J
` 6=k

∫ u′+t−u−t′

0
p(t− u, `, v; t′, k′, u′)µ`k(t− u, v)

× pkk(t; t− u, 0)
(
dv + dτ{u′+t−u−t′}(v)

)
,

• else,

p(t, k, u; t′, k′, u′) = 1(k=k′)1(t−t′=u−u′)pkk(t, t
′, u′).

Proof. (Outline) For t− t′ > u, a jump must have occurred between time t′ and time t,

and we argued in the proof of Theorem 6.1 that a density with respect to the Lebesgue

measure exists. That the proposed density satisfies the IDE (6.1) can be seen by applying(
∂
∂t + ∂

∂u

)
to

P (t, k, u; t′, k′, u′) =

∫ u

0
p(t, k, v; t′, k′, u′)

(
dv + dτ{u′+t−t′}(v)

)
,

and where the proposed density is inserted.

For the second part where t− t′ ≤ u, a jump cannot have occurred after time t′, and we

must have stayed in the initial state. Then the result is known from (6.2).

We interpret the terms of the density. As was argued in the proof, the last part is

the probability mass originating from the initial state, and is simply the probability of

having made no jumps. The probability mass in the first part is all jumps into state k

happening at time t − u. Inside the integral, we see the probability of being in a state

` at time t− u with a duration v, multiplied with the probability of a jump to state k,

which is again multiplied with the probability of then staying in state k from time t− u
to time t. Then we simply sum over all states ` and all durations v.
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