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Abstract

For market consistent life insurance liabilities modelled with a multi-state Markov chain, it is of

importance to consider the interest and transition rates as stochastic processes, for example in

order to consider hedging possibilities of the risks, and for risk measurement. In the literature,

this is usually done with an assumption of independence between the interest and transition

rates. In this paper, it is shown how to valuate life insurance liabilities using affine processes

for modelling dependent interest and transition rates. This approach leads to the introduction

of so-called dependent forward rates. We propose a specific model for surrender modelling, and

within this model the dependent forward rates are calculated, and the market value and the

Solvency II capital requirement are examined for a simple savings contract.

Keywords: Affine Processes; Doubly Stochastic Process; Multi-state Life Insurance Models; Pol-

icyholder Behaviour; Solvency II; Surrender

JEL Classification: G22

1 Introduction

Life insurance liabilities are traditionally modelled by a finite state Markov chain with

deterministic interest and transition rates. In order to give a market consistent best

estimate of the present value of future payments, it has become of increasing interest to

let the interest and transition rates be modelled as stochastic processes. The stochastic

modelling is important in order to consider hedging possibilities of the risks. With

the Solvency II rules, stochastic modelling of the interest and transition rates is also

important from a risk management perspective. Modelling the interest and transition
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rates as stochastic processes is traditionally done with an independence assumption. In

this paper, we relax the independence assumption, and consider basic valuation with

dependence between the interest and one or more transition rates. This is done with

continuous affine processes for the modelling of the dependent rates. The study of

valuation of life insurance liabilities with dependent rates leads to the definition of so-

called dependent forward rates. These are natural quantities that appear in case of

dependence, replacing the usual forward rates, which are not directly applicable. Using

the theory of dependent affine rates, we consider the case of surrender modelling, and

propose a specific model for dependent interest and surrender rates. This is of particular

interest from a Solvency II point of view. Within this model, a simple savings contract

with a buy-back option is considered. We calculate the dependent forward rates, the

market value and the Solvency II capital requirement. This is done in part without

hedging, and in part with a simple static hedging strategy. We then examine the effect

of correlation between the interest and surrender rate.

The study of valuation of life insurance liabilities with stochastic interest and transition

rates has received considerable attention during the last decades. Primarily the interest

and mortality rates have been modelled as stochastic, which is often done with affine

processes. For basic applications of affine processes for valuation of life insurance liabil-

ities, see [1]. Possibilities of hedging can be considered, which is important for market

consistent valuation, and for the study of valuation and hedging of life insurance liabil-

ities with stochastic interest and mortality rates, see [7] and [6]. Another approach to

modelling stochastic interest and mortality is taken in [15], where the interest and mor-

tality is modelled within a finite state Markov chain setup. In this paper we extend the

study of affine interest and transition rates to the case of dependence. We consider how

to valuate life insurance liabilities when the interest and one or more transition rates are

modelled as dependent affine processes. This is possible in any decrement/hierarchical

Markov chain setup, that is, in Markov chains where, when the process leaves a state,

it cannot return. We adopt the theory presented in [4], which is reviewed in Section

2 of this paper. This provides the foundation for the study of multidimensional affine

processes in life insurance mathematics. The theory presented in [4] is based partly on a

result in [8], and partly on general theory for multidimensional affine processes presented

in [9].

In the financial literature, the concept of a forward interest rate exists, which is conve-

nient, e.g. for representing zero coupon bond prices. This quantity appears naturally in

life insurance mathematics, when the interest rate is modelled as a stochastic process.

If one also considers a stochastic mortality, independent of the interest rate, it becomes

natural to define a forward mortality rate as well. With these forward rates, the expected

present value of the life insurance liabilities has a particularly compelling representation.

However, if one introduces dependence between the interest and mortality rates, the for-
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ward rates are no longer applicable. In this paper, we introduce so-called dependent

forward rates that appear naturally and are applicable for representing the expected

present value of the life insurance liabilities in a convenient form, in cases where the

usual forward rates are not applicable. In [11], alternative forward mortality rates are

defined in order to handle the case of dependence. In the present paper, we show that

one of the forward mortality rates defined in [11] is in general not well defined. For a

general discussion on forward rates, and their usefulness, see [14], wherein the case of

dependence between the rates is discussed as well. One of the consistency problems with

forward rates in the dependent setup that is raised in [14] is solved by the proposed

dependent forward rates introduced in the present paper. Also, the dependent forward

rates introduced here generalise the usual definitions of forward rates, in the sense that

when there is independence between the rates, the dependent forward rates equal the

usual forward rates.

Modelling policyholder behaviour has become of increasing importance with the pro-

posed Solvency II rules, where one is required to consider any dependence between the

economic environment and policyholder behaviour, see Section 3.5 in [5]. The study of

surrender behaviour can either be made using a rational approach, where the outset is,

that the policyholders surrender the contract if it is rational from some economic view-

point, which is studied in [16]. This seems a bit extreme, given that this behaviour is not

seen in practice. Another approach is the intensity approach, where the policyholders

surrender randomly, regardless whether or not it is profitable in the current economic

environment. This is not a perfect way of modelling either, since if the interest rates

decrease a lot, a guarantee given in connection with the life insurance contract motivates

the policyholders to keeping the contract. For an overview of some of the approaches,

see [12]. In [10], an attempt is made on coupling the two approaches, using two different

surrender rate models if it is rational or irrational, respectively, to surrender. In this

paper, we propose another way of coupling the two approaches. We let the surrender

rate be positively correlated with the interest rate, thus if the interest rate decreases a

lot, the surrender rate also decreases, representing that the guarantee inherent in the

life insurance contract is of value to the policyholder.

The Solvency II capital requirement is basically, that “the insurance company must

have enough capital, such that the probability of default within the next year is less

than 0.5%”, representing that a default is a 200-year event. When the insurance com-

pany updates its mortality tables, or other transition rate tables, this represents a risk

that must be taken into account when putting up the Solvency II capital requirement.

Mathematically, this can be done using stochastic rates. For an examination of mortality

modelling and the Solvency II capital requirement, see e.g. [2]. For a basic discussion of

the mathematical formulation of the Solvency II capital requirement, see e.g. [3]. In this

paper, we determine the Solvency II capital requirement for the simple savings contract
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where the interest and surrender rate risk is considered, both in the case of no hedging

strategy, and also in the case of a simple strategy where interest rate risk is hedged.

The structure of the paper is as follows. In Section 2, we present basic results on multidi-

mensional continuous affine processes, which provides the foundation for the application

of dependent affine processes in life insurance mathematics. In Section 3, we present the

general life insurance setup with stochastic interest and transition rates, and in Section

4, we propose the definition of dependent forward rates and compare to the usual forward

rate definition. In Section 4.1, we discuss other definitions in the literature of forward

rates in a dependent setup, and compare them to the dependent forward rates proposed

here. In Section 5, we present a specific model for dependent interest and surrender

rates. The model is introduced in Section 5.1. We first discuss how to find the Solvency

II capital requirement, which is done in Section 5.3, and a simple hedging strategy for

the interest rate risk is presented in Section 5.4. Numerical results are presented in

Section 5.5, consisting of the dependent forward rates found, and the market value and

Solvency II capital requirement, presented for different levels of correlation.

2 Continuous Affine Processes

The class of affine processes provides a method for modelling interest and transition

rates, with the possibility of adding dependence. In this section, we consider general

results about continuous affine processes, which we apply in this paper. For more details

on the theory presented in this section, see [4].

Let X be a d-dimensional affine process, satisfying the stochastic differential equation

dX(t) = (b(t) + B(t)X(t)) dt+ ρ(t,X(t)) dW (t),

where W is a d-dimensional Brownian motion. Here, b : R+ → Rd is a vector function,

and B : R+ → Rd×d is a matrix function, where we denote column i by βi(t), so that

B(t) = (β1(t), . . . , βd(t)). When squared, the volatility parameter function ρ(t, x) must

be affine in x, i.e.

ρ(t, x)ρ(t, x)> = a(t) +

d∑
i=1

αi(t)xi,

for matrix functions a : R+ → Rd×d and αi : R+ → Rd×d. Consider now affine trans-

formations of X, by defining a vector function c : R+ → Rp and a matrix function

Γ : R+ → Rp×d, thereby defining the p-dimensional process,

Y (t) = c(t) + Γ(t)X(t). (2.1)
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We think of X as socio-economic driving factors, and then Y is a collection of the

stochastic interest rate and/or transition rates. In this section, we work in a probability

space (Ω,F ,F, P ) with the filtration F = (F(t))t∈R+ generated by the Brownian motion

W.

For applications of Y as interest and as transition rates in finite state Markov chain

models, we present some essential relations. The results hold under certain regularity

conditions, for details see [4]. Denote by 1 a vector with 1 in all entries, where the

dimension is implicit. Also, denote by γi(t) the sum of the ith column in Γ(t), i.e.

γi(t) = 1>Γ(t)ei, where ei is the ith unit vector, i = 1, . . . , d.

The first relation, the basic pricing formula, is for 0 ≤ t ≤ T given by

E
[
e−

∫ T
t 1>Y (s) ds

∣∣∣F(t)
]

= eφ(t,T )+ψ(t,T )
>X(t), (2.2)

where φ(t, T ) is a real function, and ψ(t, T ) is a d-dimensional function, given by the

system of differential equations,

∂

∂t
φ(t, T ) = −1

2
ψ(t, T )>a(t)ψ(t, T )− b(t)>ψ(t, T ) + 1>c(t),

∂

∂t
ψi(t, T ) = −1

2
ψ(t, T )>αi(t)ψ(t, T )− βi(t)>ψ(t, T ) + γi(t), i = 1, . . . , d,

(2.3)

with boundary conditions φ(T, T ) = 0 and ψ(T, T ) = 0.

For the second relation, let a vector κ ∈ Rp be given, and let u ∈ [t, T ] be some time

point. Then,

E
[
e−

∫ T
t 1>Y (s) dsκ>Y (u)

∣∣∣F(t)
]

= eφ(t,T )+ψ(t,T )
>X(t)

(
A(t, T, u) +B(t, T, u)>X(t)

)
,

(2.4)

where (φ, ψ) is given by (2.3) as above, A is a real function and B is a vector function,

given by the system of differential equations,

∂

∂t
A(t, T, u) = −ψ(t, T )>a(t)B(t, T, u)− b(t)>B(t, T, u),

∂

∂t
Bi(t, T, u) = −ψ(t, T )>αi(t)B(t, T, u)− βi(t)>B(t, T, u), i = 1, . . . , d,

(2.5)

with boundary conditions A(u, T, u) = κ>c(u) and B(u, T, u) = κ>Γ(u). A particular

example of importance is κ = ek for some k = 1, . . . , p, and in this case, we write Ak

and Bk to emphasize the dependence on k. This second relation (2.4) is proven in [8]

for u = T , and the extension to the case u < T is for example given in [4].
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The third relation is, for another time point v ∈ [t, T ], and two integers k, l = 1, . . . , p,

given by

E
[
e−

∫ T
t 1>Y (s) dsYk(u)Yl(v)

∣∣∣F(t)
]

= eφ(t,T )+ψ(t,T )
>X(t)

×
{(

Ak(t, T, u) +Bk(t, T, u)>X(t)
)(

Al(t, T, v) +Bl(t, T, v)>X(t)
)

+ Ckl(t, T, u, v) +Dkl(t, T, u, v)>X(t)

}
,

(2.6)

where (φ, ψ) solves (2.3) and (Ak, Bk) and (Al, Bl) both solve (2.5) with boundary condi-

tions Ak(u, T, u) = e>k c(u), Bk(u, T, u) = e>k Γ(u) and Al(v, T, v) = e>l c(v), Bl(v, T, v) =

e>l Γ(v), respectively. The functions Ckl and Dkl are determined by the following system

of differential equations,

∂

∂t
Ckl(t, T, u, v) = −Bk(t, T, u)>a(t)Bl(t, T, v)

− ψ(t, T )>a(t)Dkl(t, T, u, v)− b(t)>Dkl(t, T, u, v),

∂

∂t
Dkl
i (t, T, u, v) = −Bk(t, T, u)>αi(t)B

l(t, T, v)

− ψ(t, T )>αi(t)D
kl(t, T, u, v)− βi(t)>Dkl(t, T, u, v),

(2.7)

for i = 1, . . . , d, with boundary conditions1 Ckl(u∧v, T, u, v) = 0 and Dkl(u∧v, T, u, v) =

0. This result is proven in [4].

3 The Life Insurance Model

Consider the usual life insurance setup. Let Z = (Z(t))t∈R+ be a Markov process in

the finite state space J , indicating the state of the insured. The distribution of Z is

defined via the transition rates (µij(t))t∈R+ , i, j ∈ J . With (Nij(t))t∈R+ , i, j ∈ J being

the process that counts the number of jumps for Z from state i to j, the compensated

process

Nij(t)−
∫ t

0
1(Z(s−)=i)µij(s) ds

is a martingale. We can allow the transition rates (µij) to be stochastic. In this case,

the distribution of Z is defined conditionally on the transition rates.

We model the transition rates as a time-dependent affine transformation of a d-dimensional

continuous affine process X. That is, for functions c : R+ → Rp and Γ : R+ → Rp×d, let

1The notation x ∧ y = min{x, y} is used.
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Y be defined as

Y (t) = c(t) + Γ(t)X(t).

Hence, each of the stochastic transition rates are modelled as an element in Y.

The interest rate process (r(t))t∈R+ is also allowed to be stochastic. This is modelled

in the same way, by specifying r as an element in Y. By the design of Γ and X, the

interest and transition rates can be dependent, independent or deterministic.

Let the filtrations FZ = (FZ(t))t∈R+ and FX = (FX(t))t∈R+ be the ones generated by

the processes Z and X, respectively, satisfying the usual hypothesis. We consider the

probability space (Ω,F ,F, P ), where the filtration F = (F(t))t∈R+ is given by F(t) =

FZ(t) ∨ FX(t).

We consider a life insurance policy, with payments specified by the process B = (B(t))t∈R+ ,

such that B(t) is the total payments until time t. Then we can think of dB(t) as the

payment at time t, and we can specify B as

dB(t) =
∑
i∈J

1(Z(t)=i)bi(t) dt+
∑
i,j∈J
i 6=j

bij(t) dNij(t),

for deterministic payment functions bi and bij , i, j ∈ J . Then bi(t) is the payment while

in state i at time t, and bij(t) is the payment if jumping from state i to j at time t.

The present value at time t of the future payments associated with the life insurance

policy is given by

PV (t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dB(s).

For reserving and pricing, one considers the expected present value

V (t) = E

[∫ ∞
t

e−
∫ s
t r(τ) dτ dB(s)

∣∣∣∣F(t)

]
,

where the expectation is taken using a market, risk neutral or pricing measure. For

actually calculating V (t), the tower property is applied, that is, we condition on FX(∞)

to get

V X(t) = E

[∫ ∞
t

e−
∫ s
t r(τ) dτ dB(s)

∣∣∣∣FZ(t) ∨ FX(∞)

]
,

so that V (t) = E
[
V X(t)

∣∣F(t)
]
. Here, V X(t) is the reserve conditional on the interest

and transition rates, thus corresponding to the case of deterministic rates. When val-

uating V X we need the conditional distribution of Z, and thus B, given the transition

rates. By construction this is known, and well-established theory about life insurance

reserves with deterministic interest and transition rates (see e.g. [13]) hold.
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Example 3.1. Consider a surrender model with 3 states J = {0, 1, 2}, corresponding to

alive, dead and surrendered respectively. The Markov model is shown in Figure 1. Let

the transition rate from state alive to state dead, i.e. the mortality rate, be deterministic.

We model the interest rate r and the surrender rate η as dependent affine processes in

the form,

(r(t), η(t))> = c(t) + Γ(t)X(t),

for a d-dimensional affine process X. Hence, this specification is analog to (2.1). By the

design of X, the processes Xi, i = 1, . . . , d can be dependent processes, such that the

interest rate r and the surrender rate η can be dependent processes.

-

@
@
@
@@R

Alive Dead

Surrendered

0 1

2

µ

η

Figure 1: Markov model for the survival-surrender model.

Let the payments be defined by

dB(t) = b(t)1(Z(t)=0) dt+ bd(t) dN01(t) + U(t) dN02(t),

where b(t) is the continuous payment rate at time t while alive, bd(t) is the single payment

if death occurs at time t, and U(t) is the payment upon surrender at time t. The payment

functions are deterministic.

Conditioning on the intensitites, the expected present value V X(t) is the classic result,

V X(t) = E
[
PV (t) | FX(∞), Z(t) = 0

]
=

∫ ∞
t

e−
∫ s
t (r(τ)+µ(τ)+η(τ)) dτ (b(s) + µ(s)bd(s) + η(s)U(s)) ds,

see e.g. [13]. Removing the condition, we find, using Equations (2.2) and (2.4),

V (t) = E
[
V X(t)

∣∣F(t)
]
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=

∫ ∞
t

e−
∫ s
t µ(τ) dτ

{
E
[
e−

∫ s
t (r(τ)+η(τ)) dτ

∣∣∣F(t)
]

(b(s) + µ(s)bd(s))

+ E
[
e−

∫ s
t (r(τ)+η(τ)) dτη(s)

∣∣∣F(t)
]
U(s)

}
ds

=

∫ ∞
t

e−
∫ s
t µ(τ) dτ+φ(t,s)+ψ(t,s)

>X(t)
(
b(s) + µ(s)bd(s)

+
(
Aη(t, s, s) +Bη(t, s, s)>X(t)

)
U(s)

)
ds.

#

4 Dependent Forward Rates

The form of V (t) in Example 3.1 motivates the definition of quantities similar to forward

rates, that can be used to express the solution. In particular, this leads to a forward

interest rate, but this is in general not equal the forward rate obtained using the usual

definition. Hence, we apply the term dependent forward rates.

Let X, c(t) and Γ(t) be given, and let Y be of the form (2.1). We consider some

motivating calculations first, and then define the dependent forward rates. See that,

E
[
e−

∫ T
t 1>Y (s) ds1>Y (T )

∣∣∣F(t)
]

= − ∂

∂T
E
[
e−

∫ T
t 1>Y (s) ds

∣∣∣F(t)
]

= − ∂

∂T
eφ(t,T )+ψ(t,T )

>X(t)

= eφ(t,T )+ψ(t,T )
>X(t)

(
− ∂

∂T
φ(t, T ) +X(t)>

(
− ∂

∂T
ψ(t, T )

))
,

where we interchanged integration and differentiation, and applied (2.2). On the other

hand, if we instead apply (2.4) with κ = 1, we find

E
[
e−

∫ T
t 1>Y (s) ds1>Y (T )

∣∣∣F(t)
]

= eφ(t,T )+ψ(t,T )
>X(t)

(
A(t, T, T ) +X(t)>B(t, T, T )

)
,

= eφ(t,T )+ψ(t,T )
>X(t)

(
p∑

k=1

Ak(t, T, T ) +X(t)>
p∑

k=1

Bk(t, T, T )

)
,

where (Ak, Bk), k = 1, . . . , p are solutions to (2.5) with boundary conditions given by

κ = ek, i.e. Ak(T, T, T ) = e>k c(T ) and Bk(T, T, T ) = e>k Γ(T ). The last equality sign

is obtained using the relations
∑p

k=1A
k(t, T, T ) = A(t, T, T ) and

∑p
k=1B

k(t, T, T ) =

B(t, T, T ), which hold since (A,B) also solves the linear system of differential equations
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(2.5), with boundary conditions given by κ = 1. Gathering the two calculations above,

we conclude that

− ∂

∂T
φ(t, T ) =

p∑
k=1

Ak(t, T, T ), − ∂

∂T
ψ(t, T ) =

p∑
k=1

Bk(t, T, T ),

and, in particular, since φ(t, t) = 0 and ψ(t, t) = 0, that

φ(t, T ) = −
∫ T

t

p∑
k=1

Ak(t, s, s) ds, ψ(t, T ) = −
∫ T

t

p∑
k=1

Bk(t, s, s) ds. (4.1)

Definition 4.1. Let X be a d-dimensional continuous affine process, and let c and Γ be

given, such that Y from (2.1) is defined. Let t ≤ s and k = {1, . . . , p}. The dependent

forward rate fkt (s) for the stochastic rate Yk(s) at time t is then given by

fkt (s) = Ak(t, s, s) +X(t)>Bk(t, s, s), (4.2)

where (Ak, Bk) solves the system of differential equations (2.5), with boundary conditions

given by κ = ek.

Remark 4.2. Using the notation of the dependent forward rates, we can express the

relation (2.2), and for u = T also the relation (2.4), as

E
[
e−

∫ T
t 1>Y (s) ds

∣∣∣F(t)
]

= e−
∫ T
t

∑p
i=1 f

i
t (s) ds,

E
[
e−

∫ T
t 1>Y (s) dsYk(T )

∣∣∣F(t)
]

= e−
∫ T
t

∑p
i=1 f

i
t (s) dsfkt (T ).

(4.3)

3

The dependent forward rates are in Definition 4.1 only for affine processes. However, if

one wish, equation (4.3) can be used to extend the definition to any underlying process:

The equations (4.3) uniquely determine the dependent forward rates, thus the dependent

forward rates exist for any underlying process, and not only affine processes. This is not

a constructive definition though, and in the present paper we only focus on the affine

class.

Example 4.3. (Example 3.1 continued) Using the definition of the dependent forward

rates, we can write the expected present value as,

V (t) =

∫ ∞
t

e−
∫ s
t (frt (τ)+µ(τ)+f

η
t (τ))dτ

(
b(s) + µ(s)bd(s) + fηt (s)U(s)

)
ds. (4.4)

We see that the expected present value is of the same form as the formula that appears

in the case of deterministic rates, but with the interest and surrender rates exchanged
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by the corresponding dependent forward rates. Note that we used a slightly different

notation, such that we write f r instead of f1 and fη instead of f2.

Often we want to consider both the quantity

E
[
e−

∫ T
t 1>Y (s) ds

∣∣∣F(t)
]

= E
[
e−

∫ T
t (r(s)+η(s)) ds

∣∣∣F(t)
]
,

where Y (t) = (r(t), η(t)), as well as the quantities arising from the models Y 1(t) =

(r(t), 0) and Y 2(t) = (0, η(t)),

E
[
e−

∫ T
t 1>Y 1(s) ds

∣∣∣F(t)
]

= E
[
e−

∫ T
t r(s) ds

∣∣∣F(t)
]
,

E
[
e−

∫ T
t 1>Y 2(s) ds

∣∣∣F(t)
]

= E
[
e−

∫ T
t η(s) ds

∣∣∣F(t)
]
.

In such cases, we add a more detailed superscript to the forward rates f , and specify

the model we think of after a colon. That is, we write

E
[
e−

∫ T
t (r(s)+η(s)) ds

∣∣∣F(t)
]

= e−
∫ T
t (f

r:(r+η)
t (s)+f

η:(r+η)
t (s)) ds,

as well as

E
[
e−

∫ T
t r(s) ds

∣∣∣F(t)
]

= e−
∫ T
t fr:rt (s) ds,

E
[
e−

∫ T
t η(s) ds

∣∣∣F(t)
]

= e−
∫ T
t fη:ηt (s) ds.

Note that f r:rt (s) and fµ:µt (s) are the usual forward rates. #

The representation (4.4) is convenient, since it allows us to use the classic formulae,

and just plug in pre-calculated dependent forward rates. The result is only obtainable

with the dependent forward rates defined here. If one used a spread-rate approach, as

in [11], one would have had two different surrender rates and thus not obtained the

formula (4.4). In [14], Section 5, the forward rate approach is criticised by the fact that

the formula (4.4) is not available, and the dependent forward rates meet this critique.

The difference between the dependent forward rates and the spread rate approach is

examined with (4.11) in Section 4.1 below.

We briefly compare with the usual forward interest rate. Let the model Y (t) = c(t) +

Γ(t)X(t) be given, for p > 1, and let r(t) = Y1(t) be the interest rate. The forward

interest rate is the function gt(s) that satisfies

E
[
e−

∫ T
t r(s) ds

∣∣∣F(t)
]

= e−
∫ T
t gt(s) ds.

This function also satisfies, as can be shown by differentiation,

E
[
e−

∫ T
t r(s) dsr(T )

∣∣∣F(t)
]

= e−
∫ T
t gt(s) dsgt(T ). (4.5)

11



4.1 Comparison With Other Dependent Setups

The dependent forward rate for the interest rate in our model Y, as defined in Definition

4.1, is denoted f rt (s). It satisfies,

E
[
e−

∫ T
t (r(s)+Y2(s)+...+Yp(s)) dsr(T )

∣∣∣F(t)
]

= e−
∫ T
t (frt (s)+f2t (s)+...+f

p
t (s)) dsf rt (T ), (4.6)

where the other forward rates f it (s) satisfy analogue relations.

In the case that r = (r(t))t∈R+ is independent of Y2, . . . ,Yp, the dependent forward

rate for the interest r simplifies to the usual forward interest rate. This can be seen by

two simple calculations. First, see that

e−
∫ T
t (frt (s)+f2t (s)+...+f

p
t (s)) ds

= E
[
e−

∫ T
t (r(s)+Y2(s)+...+Yp(s)) ds

∣∣∣F(t)
]

= E
[
e−

∫ T
t r(s) ds

∣∣∣F(t)
]

E
[
e−

∫ T
t (Y2(s)+...+Yp(s)) ds

∣∣∣F(t)
]

= e−
∫ T
t gt(s) ds E

[
e−

∫ T
t (Y2(s)+...+Yp(s)) ds

∣∣∣F(t)
]
.

(4.7)

A similar calculation, using (4.6) and (4.5), yields

e−
∫ T
t (frt (s)+f2t (s)+...+f

p
t (s))dsf rt (T )

= e−
∫ T
t gt(s) dsgt(T ) E

[
e−

∫ T
t (Y2(s)+...+Yp(s)) ds

∣∣∣F(t)
]
.

Dividing with the identity (4.7) above, we conclude that

f rt (T ) = gt(T ),

which holds for all T where t < T , and we conclude that the dependent forward interest

rate equals the usual forward interest rate.

The calculations relied critically on the independence assumption, and in the general

case the dependent forward rate for the interest is not equal to the forward interest

rate. Intuitively, when the interest rate appears together with other dependent rates,

the forward rates need to compensate for this dependence, and thus the difference of the

dependent forward rates and the usual forward rates can be thought of as a “covariance”

term.

4.1 Comparison With Other Dependent Setups

For the case of dependent affine rates, there have been other proposals for the definition

of forward rates. In [11], the model contains an interest rate and a mortality rate which

are dependent. This corresponds to the case p = 2, where r(t) = Y1(t) is the interest rate

and µ(t) = Y2(t) is the mortality rate. Their approach is to keep the definition of the

12



4.1 Comparison With Other Dependent Setups

forward interest rate gt : [t,∞)→ R+ unchanged, and then find forward mortality rates

that are compatible with this definition, thus interpreting the forward mortality rate as

a spread rate. In order to make this idea work, they define two different mortality rates,

one for pure endowments, and one for term insurances. We briefly review this approach

and compare to the definition of the dependent forward rates in the previous section.

This serves to highlight the advantage of the dependent forward rates, in particular that

there is only one forward mortality rate when considering a life annuity and a term

insurance together.

The forward mortality rate for pure endowments, hpet : [t,∞) → R+, is defined as the

function satisfying

E
[
e−

∫ T
t (r(s)+µ(s)) ds

∣∣∣F(t)
]

= e−
∫ T
t (gt(s)+hpet (s)) ds.

In terms of the dependent forward rates, f rt and fµt , we can use the first part of (4.3)

and write the forward mortality rate for pure endowment as,

hpet (s) = f rt (s) + fµt (s)− gt(s), (4.8)

which in particular shows that it is well-defined. The forward mortality rate for pure

endowment can be given an intuitive interpretation. Recall that the dependent forward

rates are different from the usual definition of forward rates, because the mortality rate

appears together with another dependent rate, thus the dependent forward rates contains

a “covariance” part. The forward mortality rate for pure endowments corresponds to

moving the “covariance” from the forward interest rate into the forward mortality rate,

instead of having a part in each of the forward rates. In other words, f rt + fµt contains

the “covariance” terms, and subtracting gt, which does not contain any “covariance”

terms, the “covariance” terms are contained in hpet . In this way, the original definition

of the forward interest rate can be kept unaltered, but one can say that the forward

mortality rate for pure endowment hpet contains a “covariance” term belonging to the

interest rate.

The forward mortality rate for term insurances, htit : [t,∞) → R+, is defined as the

function satisfying,

E

[∫ T

t
e−

∫ u
t (r(s)+µ(s)) dsµ(u) du

∣∣∣∣F(t)

]
=

∫ T

t
e−

∫ u
t (gt(s)+htit (s))dshtit (u) du. (4.9)

To establish that htit is well-defined is not as easy as with the forward mortality rate for

the pure endowment. First, see that the definition depends on the choice of T . It is

natural to make the assumption that the forward mortality rate for term insurances htit
is independent of T . This assumption is implicity made in the notation used in [11], and

the assumption is also made for the forward mortality rate for pure endowment. With

13



4.1 Comparison With Other Dependent Setups

this assumption of independence of T , we can differentiate with respect to T , and find

the equivalent definition,

E
[
e−

∫ T
t (r(s)+µ(s)) dsµ(T )

∣∣∣F(t)
]

= e−
∫ T
t (gt(s)+htit (s))dshtit (T ), (4.10)

for T ≥ t. We are now ready to answer the question of well-definedness, which is

important for a fruitful definition of a forward rate. It turns out, that when using the

definition (4.10), there are cases where the forward mortality rate for term insurances

does not exist for all time points, and one should therefore be careful to use the definition

in practice. This will in particular be the case for models with positive correlation. A

proof is given in the appendix, where we in Section A present a class of models where

the forward mortality rate for term insurances does not exist. If one instead uses the

definition (4.9) and allow htit (s) to depend on T as well, the extra parameter T probably

makes it possible to show that it is well-defined.

4.1.1 One forward mortality/surrender rate

We are now ready to present the main difference between the spread rate approach and

the dependent forward rate approach. We compare the forward mortality rates from [11]

with the dependent forward rates, and for now assuming that the forward rate for term

insurances exists, we consider a policy consisting of a life annuity with a payment rate

b, and a term insurance with payment 1 upon death. The policy terminates at time T .

The expected present value at time t is

E

[∫ T

t
e−

∫ s
t (r(s)+µ(s)) ds (b+ µ(s)) ds

∣∣∣∣F(t)

]
=

∫ T

t
e−

∫ s
t (f

r:(r+µ)
t (s)+f

µ:(r+µ)
t (s)) ds

(
b+ f

µ:(r+µ)
t (s)

)
ds

=

∫ T

t
e−

∫ s
t gt(s) ds

(
e−

∫ s
t h

pe
t (s) dsb+ e−

∫ s
t h

ti
t (s) dshtit (s)

)
ds,

(4.11)

where we first wrote it in terms of the dependent forward rates, and afterwards in terms of

the forward mortality rates for pure endowment and term insurances, respectively. This

illustrates the difference between the different types of forward rates. The dependent

forward rate for mortality can be used for both the life annuity and the term insurance,

whereas with the other forward mortality rate definitions, one need a different one for a

different product. If the interest rate is independent of the mortality rate, the different

forward mortality rates simplify and they all equal the usual forward mortality rate.

The fact that the dependent forward rates solve the problem of the two different forward

rates for the different products in (4.11) is one of the main advantages. It is exactly

this problem with existing forward rates that is criticised in Section 5 of [14]. With the
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dependent forward rates, this issue is resolved in that a unique forward mortality rate

exists, that can be used for both the life annuity and the term insurance. In the article

[14] a general discussion of the concept of forward rates, and generalisations to dependent

models is carried out, including discussion of requirements for more generalised forward

rates. Even though the critique from Section 5 of [14] is met with the dependent forward

rates, they do not meet all the requirements set up in [14]. In particular, in life insurance

models where one needs to use the relation (2.6), the dependent forward rates are not

applicable.

The feature of a unique forward mortality rate in (4.11) does also apply to the surrender

setup in Example 4.3. The dependent forward rates allow us to have one forward sur-

render rate, and if the spread approach was used, one would have had different forward

surrender rates: One for reducing with the probability of not having surrendered, and

another for calculating the probability of surrendering at an exact time. Thus, the for-

mula (4.4) would have had two parts with two different forward surrender rates, similar

to the last line in (4.11).

5 Modelling Interest and Surrender

In order to illustrate the methods proposed, we put up a specific model for dependent

interest and surrender rate. The results are presented naturally using the dependent

forward rates such that the formulae are in parallel with the classic life insurance results

obtained with deterministic transition rates. This allows for convenient interpretation

and comparison of the results. For example, using the replacement result, the effects of

introducing stochastic rates can be measured in terms of forward rates, i.e. the difference

between the original deterministic rates and the dependent forward rates.

We model the interest rate as a stochastic diffusion process r, and the surrender rate by

the diffusion process η. The interest and surrender rates are then modelled as dependent

processes, within the affine setup presented in Section 2. Within the Solvency II regime,

one is required to model surrender behaviour, and also take into consideration any

dependence of the interest rate (i.e. the economic environment), see Section 3.5 in [5].

This model is thus an example of how this can be done.

5.1 Correlated Interest and Surrender Model

Let η0(t) be a deterministic surrender rate, corresponding to best estimate, i.e. the

expectation of the future surrender rate. The interest rate r(t) and surrender rate η(t)
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5.1 Correlated Interest and Surrender Model

are then modelled as an affine transformation of X of the form,

r(t) = X1(t),

η(t) = η0(t)X2(t),

where X is a 2-dimensional stochastic diffusion process. The process X satisfies the

stochastic differential equation,

dX1(t) = (b1(t)− β1X1(t)) dt+ σ1

(√
1− ρ2 dW1(t) + ρ

√
X2(t) dW2(t)

)
,

dX2(t) = (b2 − β2X2(t)) dt+ σ2
√
X2(t) dW2(t),

(5.1)

where W is a 2-dimensional standard Brownian motion. The parameters satisfy b2, β1,

β2, σ1, σ2 ∈ R+ and ρ ∈ [−1, 1], and the function b1 : R+ → R is chosen such that an

initial term structure is fitted.

The process X2 models relative deviations of the surrender rate from the best estimate,

and it stays non-negative, hence the surrender rate η(t) is non-negative. The interest

rate process is a mix between a Hull-White Vaš́ıček and a Heston model.

The model satisfies our criteria. It is affine, since X is affine and the surrender and

interest rate is an affine transformation of X. The surrender rate is non-negative. Also,

choosing no, or little, mean reversion, stress scenarios produced by the model are close to

parallel shifts of the forward rates, which resembles the stress scenarios of the standard

model of Solvency II.

5.1.1 Correlation

The correlation between the interest rate and the surrender rate is not in general equal

to the dependency parameter ρ, which is due to the appearance of
√
X2(t) in the term

ρ
√
X2(t) dW2(t) in the first line of (5.1). However, if we assume that E [X2(t)] = 1 for

all t, we can calculate the correlation, using standard methods2,

Corr [r(t), η(t)] = ρ
e(β1+β2)t − 1

β1 + β2

√
2β1

e2β1t − 1

√
2β2

e2β2t − 1
.

In the special case where β1 = β2, we get

Corr [r(t), η(t)] = ρ.

When the parameters are chosen in Section 5.5.1 below, we see that indeed E [X2(t)] = 1

and β1 = β2 holds. We note that the correlation considered here is not the instantaneous

correlation between the two stochastic processes t 7→ r(t) and t 7→ η(t), but the standard

correlation between the two stochastic variables r(t) and η(t).

2The quantities E [r(t)] and E [η(t)] can be found taking expectation on the Itô representation, and

solving a differential equation. The expectation E [r(t)η(t)] can be found analogously, by first finding a

stochastic differential equation for the process t 7→ r(t)η(t).
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5.2 The (Life Insurance) Product

5.2 The (Life Insurance) Product

Consider a simple savings contract with a buy-back option. The savings contract consists

of a guaranteed payment of 1 at retirement at time T . There is an account at the provider

with a guaranteed interest rate r̂ until time T . The value at time t of the account is

then,

U(t) = e−r̂(T−t). (5.2)

The owner of the savings contract can then at any time before time T surrender the

contract and receive the current account value U(t).

The account value U(t) is not necessarily identical to the reserve (market value) of the

savings contract, thus the savings contract provider has a risk. In order to best estimate

the value of the account, the surrender behaviour should be taken into account. There are

different ways to valuate the surrender option, see [12] and references therein, and [10].

In this paper we adopt the intensity approach, and assume that the insured surrenders

with rate η(t) at time t, i.e. in a short time interval [t, t + dt], the insured surrenders

with probability η(t) dt, given that surrender has not occured before time t. We adopt

the life insurance setup of Section 3, and consider the state of the insured in the state

space J consisting of the two states alive and surrendered, corresponding to Figure 2.

This savings contract is a simplified version of the product considered in Example 3.1 and

the Markov model shown in Figure 1, but in order to keep the notation simple and focus

on the essential parts of the formulae, the mortality modelling is omitted. As long as the

mortality rate is independent of the interest and surrender rate, e.g. if it is deterministic,

it is straightforward to extend the formulae to include mortality. Including mortality

intuitively corresponds to reducing all payments by the probability of death. For the

Solvency II studies below, we can omit mortality because the independence assumption

isolates it from our dependency considerations between the interest and surrender rate.

-Alive Surrendered
0 1

η

Figure 2: Markov model for the surrender model.

The payments of the contract consist of a single payment upon retirement at time T ,

and a payment upon surrender at time t of size U(t). That is, the total payments B(t)

at time t is given by

dB(t) = U(t) dN01(t) + 1(Z(t)=0) dεT (t),
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5.3 Solvency II

where εT is the Dirac measure at T . Analogously to the calculations in Example 3.1 and

Example 4.3, we find the present value at time t of the contract as

PV L(t) =

∫ T

t
e−

∫ s
t r(τ) dτ dB(s)

=

∫ T

t
e−

∫ s
t r(τ) dτU(s) dN01(s) + e−

∫ T
t r(τ) dτ1(Z(T )=0),

(5.3)

and the market value at time t is, given the savings contract has not been surrendered,

V (t) = E
[
PV L(t)

∣∣F(t), Z(t) = 0
]

= E

[∫ T

t
e−

∫ s
t (r(τ)+η(τ)) dτη(s)U(s) ds+ e−

∫ T
t (r(τ)+η(τ)) dτ

∣∣∣∣FX(t)

]
=

∫ T

t
e−

∫ s
t (f

r:(r+η)
t (τ)+f

η:(r+η)
t (τ)) dτf

η:(r+η)
t (s)U(s) ds

+ e−
∫ T
t (f

r:(r+η)
t (τ)+f

η:(r+η)
t (τ)) dτ .

(5.4)

Here we used Remark 4.2. The notation used is introduced in Example 4.3 above.

5.3 Solvency II

For Solvency II purposes one wants to control the risk of default, such that it is less than

99.5% during the following year. In this section we specify how to interpret this in our

setup, following the reasoning of Section 1.1 in [3].

We want to find the loss after one year, which is a stochastic variable, and find quantiles

in the distribution of this stochastic variable. Let PV (t) denote the present value at

time t of future payments of the insurance company. At time 0, the Solvency II loss can

be written as

E [PV (0) |F(1) ]− E [PV (0)] ,

where the expectation is taken using the market measure, or some reserving measure.

For the rest of the paper, we refer to this measure as the market measure. The last

term is the value of the future payments now, and the first term is the value conditional

on the following year’s information, which is uncertain. For simplicity, we ignore the

so-called unsystematic risk during the first year, that is, we take average of the Markov

chain Z, conditionally on the underlying intensities X. Formally, we define the Solvency

II loss after 1 year as

L = E
[
PV (0)

∣∣FX(1)
]
− E [PV (0)] .
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5.3 Solvency II

Both liabilities and assets must be taken into account, so the present value takes the

form PV (t) = PV L(t) − PV A(t), that is, the present value of the liabilities less the

assets.

We consider our life insurance contract from Section 5.2. The simplest possible asset

allocation is to deposit all capital in a savings account, earning the risk free interest

rate. In that case, the present value of the assets is deterministic and equals the amount

invested today. If the amount invested at time 0 is the value of the liabilities, (5.4), we

have

PV A(0) = V (0).

Using this, we get the Solvency II loss,

L = E
[
PV L(0)− PV A(0)

∣∣FX(1)
]
− E

[
PV L(0)− PV A(0)

]
= E

[
PV L(0)

∣∣FX(1)
]
− V (0),

and we see that the assets disappear from the formula, because they are essentially risk

free. For our case, the first term is obtained from (5.3), and we get

E
[
PV L(0)

∣∣FX(1)
]

=

∫ 1

0
e−

∫ s
0 (r(τ)+η(τ)) dτη(s)U(s) ds

+ e−
∫ 1
0 (r(s)+η(s)) ds

∫ T

1
e−

∫ s
1 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτf

η:(r+η)
1 (s)U(s) ds

+ e−
∫ 1
0 (r(s)+η(s)) dse−

∫ T
1 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτ .

Subtracting V (0), given by (5.4), yields the loss, and we rearrange the terms slightly,

L =

∫ 1

0
e−

∫ s
0 (r(τ)+η(τ)) dτη(s)U(s) ds

−
∫ 1

0
e−

∫ s
0 (f

r:(r+η)
0 (τ)+f

η:(r+η)
0 (τ)) dτf

η:(r+η)
0 (s)U(s) ds

+ e−
∫ 1
0 (r(s)+η(s)) ds

∫ T

1
e−

∫ s
1 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτf

η:(r+η)
1 (s)U(s) ds

−
∫ T

1
e−

∫ s
0 (f

r:(r+η)
0 (τ)+f

η:(r+η)
0 (τ)) dτf

η:(r+η)
0 (s)U(s) ds

+ e−
∫ 1
0 (r(s)+η(s)) dse−

∫ T
1 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτ

− e−
∫ T
0 (f

r:(r+η)
0 (τ)+f

η:(r+η)
0 (τ)) dτ .

The first two lines correspond to the losses arising during the first year because of

incorrect expectations of interest and surrender behaviour. The last four lines correspond
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5.4 Hedging Strategy with a Continuously Paid Coupon Bond

to changed expectations of the future, arising because of information received during the

first year. That is, the third and fourth line corresponds to changed expectations of the

future about the surrender payments, and the last two lines correspond to changed

expectations of the future about the payment occuring at retirement. Intuitively, the

information received during the first year allows for an exact discounting during the first

year, and a more precise valuation of the discounting and surrender behaviour occuring

from year 1 and onwards.

The loss can be written in a simpler form. Using the notation that, for s ≤ t, f r:(r+η)t (s) =

r(s) and f
η:(r+η)
t (s) = η(s), we can write the Solvency II loss as

L =

∫ T

0
e−

∫ s
0 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτf

η:(r+η)
1 (s)U(s) ds

−
∫ T

0
e−

∫ s
0 (f

r:(r+η)
0 (τ)+f

η:(r+η)
0 (τ)) dτf

η:(r+η)
0 (s)U(s) ds

+ e−
∫ T
0 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτ − e−

∫ T
0 (f

r:(r+η)
0 (τ)+f

η:(r+η)
0 (τ)) dτ .

(5.5)

This formula gives interpretation to the Solvency II loss, which arises due to the devel-

opment of the forward rates. The loss is the difference in the expected present value

with the forward rates evaluated in 1 years time, and evaluated now. In practice the loss

can thus be obtained by simulation of the dependent forward rates one year ahead. This

is similar to how forward rates are used in finance, where the forward interest rate is

simulated ahead to obtain future term structures. Here, we also simulate the dependent

forward rates ahead in order to obtain the future valuation basis.

Recalling that the dependent forward rates f
r:(r+η)
1 and f

η:(r+η)
1 are FX(1) measurable,

we can use that X is a Markov process and see that f
r:(r+η)
1 and f

η:(r+η)
1 are r(1) and

η(1) measurable. Thus, the loss can be found by simulation of the underlying rates r(s)

and η(s) for 0 ≤ s ≤ 1. The simulation must be done under the real world probability

measure. This is opposed to the market, or reserving, measure, that was used to find the

loss. In this paper, we assume for simplicity that the two measures are identical, and do

not adapt a change of measure approach, relieving us from discussions of preservation

of the Markov property during measure changes.

5.4 Hedging Strategy with a Continuously Paid Coupon Bond

In practice, an insurer tries to hedge the interest rate risk, thereby reducing the loss

significantly. We consider a simple static hedging strategy, in a bond with continuous

coupon payments of the form,

c(t) = e−
∫ t
0 f

η:η
0 (τ) dτfη:η0 (t)U(t),
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5.4 Hedging Strategy with a Continuously Paid Coupon Bond

for t ∈ (0, T ), and a final payment at time T of

C(T ) = e−
∫ T
0 fη:η0 (τ) dτ .

For more details, see e.g. [12]. This corresponds to the expected payments of the life

insurance contract, conditional on the interest rate. We can associate a payment process

Abond with the bond, given by dAbond(t) = c(t) dt + C(t) dεT (t). The present value of

future payments associated with the bond is then,

PV bond(t) =

∫ T

t
e−

∫ s
t r(τ) dτ dAbond(s)

=

∫ T

t
e−

∫ s
t (r(τ)+fη:η0 (τ))dτfη:η0 (s)U(s) ds+ e−

∫ T
0 (r(τ)+fη:η0 (τ)) dτ .

This hedging strategy is the mean-variance optimal static hedging strategy when interest

and surrender are independent. If there is a correlation between the interest and surren-

der rate, this strategy is not optimal. The mean-variance optimal static hedging strategy

is in that case more complicated. These considerations are for simplicity omitted in this

paper, and deferred for future studies.

In the case of dependence, the price of the hedging bond is smaller than the value of the

liabilities, so the expected present value of the bond payments Abond is less than of the

payments from the savings contract B. We choose to put this excess capital, which is

given as

K = E
[
PV L(0)− PV bond(0)

]
,

in the bank account. For the assets, we thus have present value at time 0

PV A(0) = PV bond(0) +K.

We note that the sign of the payments Abond is opposite of B, where the latter are

payments to the insured and the former are payments to the insurer. Considering the

life insurance contract and the hedging strategy together, we obtain a Solvency II loss,

L = E
[
PV L(0)− PV A(0)

∣∣FX(1)
]
− E

[
PV L(0)− PV A(0)

]
= E

[∫ T

0
e−

∫ s
0 r(τ) dτ ( dB(s)− dAbond(s))

∣∣∣∣FX(1)

]
−K
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=

∫ 1

0
e−

∫ s
0 r(τ) dτ

(
e−

∫ s
0 η(τ) dτη(s)− e−

∫ s
0 f

η:η
0 (s) dsfη:η0 (s)

)
U(s) ds

+ e−
∫ 1
0 (r(s)+η(s)) ds

(∫ T

1
e−

∫ s
1 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτf

η:(r+η)
1 (s)U(s) ds

+ e−
∫ T
1 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτ

)

− e−
∫ 1
0 (r(s)+fη:η0 (s)) ds

(∫ T

1
e−

∫ s
1 (f

r:r
1 (τ)+fη:η0 (τ)) dτfη:η0 (s)U(s) ds

+ e−
∫ T
1 (fr:r1 (τ)+fη:η0 (τ)) dτ

)
−K

=

∫ T

0
e−

∫ s
0 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτf

η:(r+η)
1 (s)U(s) ds

−
∫ T

0
e−

∫ s
0 (f

r:r
1 (τ)+fη:η0 (τ)) dτfη:η0 (s)U(s) ds

+ e−
∫ T
0 (f

r:(r+η)
1 (τ)+f

η:(r+η)
1 (τ)) dτ − e−

∫ T
0 (fr:r1 (τ)+fη:η0 (τ)) dτ −K,

(5.6)

Similar to (5.5), for s ≤ t, the notation that f
r:(r+η)
t (s) = f r:rt (s) = r(s) and f

η:(r+η)
t (s) =

η(s) is used for the last equality. When there is independence the bond value is the same

as the value of the savings contract and K = 0. When there is dependence we have

K > 0, which ensures that E [L] = 0.

5.5 Numerical Results

In this section we numerically show some consequenses of modelling interest and sur-

render as positively correlated processes. First, the model is specified by choosing a set

of parameters, partly inspired by the stress levels in the Solvency II Standard Formula.

With this model, we examine the consequenses for the balance sheet value of the lia-

bilities, and the level of the Solvency II capital requirement, that is, the liabilities in 1

year’s time.

For the Solvency II capital requirement, in practice in the industry, when there is no

hedging, most of the risk is interest rate risk. Luckily, both in theory and practice, a lot of

this can be hedged by e.g. buying bonds. For the numerical illustrations of the Solvency

II capital requirement, we consider two different strategies for the assets, corresponding

to the two strategies considered in Section 5.3 and Section 5.4, respectively. First, we

consider the case where the interest rate risk is not hedged, and all assets are accumulated

by the risk free interest rate. Second, we consider the case where the insurer tries to

hedge the interest rate risk, and performs a static hedge.
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5.5.1 Parameters

The numerical examples with the model (5.1) are carried out for different level of cor-

relation, namely ρ ∈ {0, 0.3, 0.7}. Also, we consider two different guaranteed interest

rates, namely r̂ ∈ {1%, 4%}. This corresponds to a low interest rate, which could be

for a newly issued policy, and a high interest rate, which could be for a policy issued

years ago, when the interest rate level was higher. We note that the base deterministic

surrender rate η0 corresponds to a person aged 40, thus with T = 25, the contract ends

at age 65.
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Figure 3: Illustrative realisations of the interest rate (left) and the surrender rate (right), with

ρ = 0.7.

The parameters chosen for the interest and surrender rates are listed in Table 1, and in

Figure 3 some realisations of the interest and surrender rates are shown. The initial value

X1(0) and function b1(t) are chosen such that the term structure provided by the Danish

FSA at August 17, 2012 is matched. Let fFSA(t) denote the forward rate provided by

the Danish FSA. Then the parameters X1 and b1 are fitted such that

E
[
e−

∫ t
0 r(s) ds

]
= e−

∫ t
0 f

FSA(s) ds,

for all t ≥ 0. The parameters of the model correspond to the measure used for valuating

the market value of the life insurance liabilities. Thus, with respect to the interest rate

it is the risk neutral measure. For simplicity, we assume that this measure equals the

real world probability measure.

23



5.5 Numerical Results

β1 0.02

σ1 0.005

b2 0.02

β2 0.02

σ2 0.15

η0(t) 0.06− 0.002 · t
X2(0) 1

Table 1: Parameters for correlated interest and surrender modelling. The initial value X1(0)

and the function b1(t) are chosen such that the interest rate model matches the term structure

provided by the Danish FSA for valuating life insurance liabilites, at August 17, 2012.
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Figure 4: Dependent forward rates. Left: for the interest rate, f
r:(r+η)
0 (t). Right: for the

surrender rate, f
η:(r+η)
0 (t). The dependent forward rates are shown for different values of ρ. The

forward interest rate extracted from the Danish FSA at August 17, 2012 is also shown, as well as

the base deterministic surrender rate η0. Higher values of ρ lead to lower values of the forward

rates, corresponding to less discounting.

5.5.2 Dependent Forward Rates

In Figure 4, the dependent forward rates are shown. They are calculated by solving

the differential equations (2.3) and (2.5) numerically. For the interest rate, the forward

interest rate supplied by the Danish FSA, fFSA, is shown as well. We see that for

the case ρ = 0 the dependent forward interest rate f r0 is identical to the forward rate

provided by the Danish FSA. This is as expected, since in the case ρ = 0 the interest rate

and surrender rate are independent, and in this case the dependent forward rates are

equal to the usual forward rates. For a positive correlation, the dependent forward rates

are smaller. This is because the stochastic variable, e−
∫ t
0 (r(s)+η(s)) ds, which is used to

construct the dependent forward rates, has a heavier tail when the correlation is strictly

positive, due to the exponential function. Intuitively, there is less diversification between
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the interest and surrender rate.

For the surrender rate, the basic deterministic surrender rate η0 is shown as well as

the dependent forward rates. Even though E [η(t)] = η0(t), we see that the dependent

forward rates are systematically lower than η0. This is due to Jensens inequality, and to

see this, consider the case ρ = 0, where we get,

e−
∫ t
0 (f

r
0 (s)+f

η
0 (s)) ds = E

[
e−

∫ t
0 (r(s)+η(s)) ds

]
= E

[
e−

∫ t
0 r(s) ds

]
E
[
e−

∫ t
0 η(s) ds

]
> E

[
e−

∫ t
0 r(s) ds

]
e−

∫ t
0 E[η(s)] ds

= e−
∫ t
0 f

r
0 (s) dse−

∫ t
0 η

0(s) ds,

for t > 0, using that the usual forward rate is identical to the dependent forward rate

for ρ = 0. From this inequality, we obtain,

fη0 (t) < η0(t),

which is what was observed as the red and black lines in Figure 4. If there is a positive

correlation, the dependent forward surrender rate, fη:(r+η), is even smaller, similar to

the observation for the interest rates.

5.5.3 Market Value

The market value at time 0, V (0) from (5.4), can be calculated, solving the integral

numerically. For this, first use (4.1) to get

V (t) =

∫ T

t
eφ(t,s)+ψ(t,s)

>X(t)f
η:(r+η)
t (s)U(s) ds+ eφ(t,T )+ψ(t,T )

>X(t),

which is easier to handle from a computational point of view, because the functions φ

and ψ are obtained in the process of calculating the dependent forward rates f r:(r+η)

and fη:(r+η) when solving (2.3) and (2.5). The market value V (0), dependent upon

the guaranteed interest rate r̂ and the correlation ρ, is shown in Table 2. The market

values can be compared to the value of the policyholders account which is paid out on

surrender. This is given by (5.2), calculated using the guaranteed interest rate. The

value at time 0 is presented in Table 3.

The market value without surrender modelling, calculated setting the surrender rate

equal to zero, is 0.5037. It is independent of the guaranteed interest rate. From Table

2 it is seen that when we include surrender modelling the market value is somewhere

between the value of the policyholders account and the market value calculated without

surrender modelling.
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r̂

4% 1%

0 0.4567 0.6167

ρ 0.3 0.4595 0.6191

0.7 0.4631 0.6222

Table 2: Market value at time 0, V (0), of the life insurance contract. The value is shown using

three different correlations, corresponding to three different sets of dependent forward rates, red,

green and blue from Figure 4. Two different levels of guaranteed interest rate, r̂, is used, which

leads to different surrender payouts U(t).

r̂

4% 1%

0.3679 0.7788

Table 3: Initial value of the policyholders account, U(0). For the high guaranteed interest rate

(4%), the value is lower than the market value from Table 2. For the low guaranteed interest rate

(1%), the value is higher than the market value.

For both cases of guaranteed interest rates, the market value increases with correlation.

When we discussed the dependent forward rates in Section 5.5.2, we saw that the de-

pendent forward rates decrease with increasing correlation, which is basically due to

the convexity of the exponential function and Jensen’s inequality. A smaller dependent

forward interest rate leads to an increasing market value. For the surrender rate, it is

more complicated. For the case of a guaranteed interest rate of 4%, an increase in the

dependent forward surrender rate leads to a decrease in the market value, because the

market value come closer to the value paid out on surrender. For the case of a guaran-

teed interest rate of 1%, the same argument tells us that an increase in the dependent

forward surrender rate instead leads to an increasing market value. We see that the effect

of the decreasing dependent forward interest rate is largest, and in total, for both levels

of guaranteed interest rate, the market value increases when the correlation increases.

5.5.4 Solvency II

We examine the effect on the Solvency II capital requirement with two different strategies

for the assets. The first strategy is no hedging and the second strategy is a simple static

hedging strategy. This corresponds to the two strategies discussed in Section 5.3 and

Section 5.4, respectively. For the first strategy, where all assets are invested in the bank

account, the Solvency II loss is given by (5.5). For the second strategy, where the interest

rate risk is hedged statically in a bond with continuous payments, the Solvency II loss

is given by (5.6).
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Figure 5: Guaranteed interest rate 4%. Plot of the interest and surrender rate simulations after

1 year in the case without any hedging strategy and correlation ρ = 0 (left) and ρ = 0.7 (right).

The color of a mark indicates the Solvency II loss (5.5), where a darker color is a higher loss,

and black colors are losses beyond the 99.5% quantile.
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Figure 6: Guaranteed interest rate 1%. Plot of the interest and surrender rate simulations after

1 year in the case without any hedging strategy and correlation ρ = 0 (left) and ρ = 0.7 (right).

The color of a mark indicates the Solvency II loss (5.5), where a darker color is a higher loss,

and black colors are losses beyond the 99.5% quantile.
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No Hedge Hedge

r̂ r̂

4% 1% 4% 1%

0 0.069 0.077 0.014 0.025

ρ 0.3 0.072 0.072 0.015 0.028

0.7 0.078 0.060 0.017 0.029

Table 4: Simulated Solvency II loss. Without hedging it is given by (5.5) and with the hedging

strategy it is given by (5.6). Applying an interest hedging strategy significantly lowers the Solvency

II loss. Also, modelling correlation between interest and surrender has a significant impact on

the Solvency II loss.

In Table 4 the Solvency II loss for the different cases of hedging strategy, guaranteed

interest rate risk and correlation is presented. It is immediately seen, that trying to

hedge the interest rate risk by applying the simple hedging strategy significantly reduces

the Solvency II loss.

For the case of no hedging strategy, we see two different correlation effects. When the

guaranteed interest rate is 4%, a higher correlation means a higher Solvency II loss,

because a decrease in interest and surrender rate both increase the present value of the

contract payments. This is depicted in Figure 5, where we see that the loss increases

with both decreasing interest and decreasing surrender. A higher correlation means

that the probability of simultaneous drops in the interest and surrender rate occurs

simultaneously, which can be seen at the right graph in Figure 5. When the guaranteed

interest rate is instead 1%, a decrease in the surrender rate now means that Solvency

II loss decrease, which can be seen in Figure 6. Introducing a correlation leads to less

observations with decreasing interest and increasing surrender, thus leading to more

diversification and reducing the Solvency II loss. This can be seen in the right graph of

Figure 6.

6 Conclusion

In this paper we review theory on general affine processes which sets the basis for the

application in life insurance valuation and risk management. This allows us to introduce

so-called dependent forward rates. They are compared to other forward rate definitions,

and some desired properties about the dependent forward rates are highlighted. In

particular, as is seen in Section 4.1.1, the dependent forward rates meet some of the

critique of forward rates raised in [14]. However, a full answer is not reached, and it is

open for further research whether the concept of forward rates in life insurance is fruitful

beyond being a convenient representation for the quantities needed for calculation of
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certain life insurance liabilites under a stochastic intensity assumption.

In the second part of the paper, we apply the theory of the general affine processes and

the dependent forward rates. A specific model for surrender modelling is proposed, where

the interest and surrender rate is positively correlated. The surrender rate in this model

is non-negative. We consider a simple life insurance like savings product with a buy-back

option. The dependent forward rates are calculated for different correlations, and we

see that they are decreasing with increasing correlation. This in part has the effect that

the market value is increasing with correlation, since in part, this means we in practice

use a smaller interest rate for discounting. We also consider the Solvency II capital

requirement in the form of formulae for the value-at-risk in a one-year time horison. In

particular we obtain the formula (5.5), where we see that the loss is given through the

difference of the expected present value valuated with the dependent forward rates in

1 year and the current dependent forward rates. We calculate the actual Solvency II

capital requirement in our example, with and without a simple static hedging strategy

for the interest rate risk, and see how the introduction of correlation can both increase

and decrease the Solvency II capital requirement in our example, depending on the

guaranteed interest rate.
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A Forward Mortality Rate for Term Insurances not-so-well

Defined

Consider a interest and mortality rate model (r(t), µ(t)). This give us a set of dependent

forward rates, and a forward mortality rate for pure endowment. Assume that the

following assumptions hold.

Assumption A.1. Let a model for the interest and mortality rates r(t) and µ(t) be

given. The assumptions are,

1. hpet (s) > 0 for all s > t.

2. hpet is bounded from below for some timepoint, i.e. there exist ε > 0 and t0 > 0

such that hpet (s) > ε for all s > t0.

3. The forward interest rate is greater than the dependent forward rate for the interest,

gt(s) > f rt (s), for all s > t.

It is indeed possible to construct models where these assumptions hold, and they will

hold for most models when there is a positive correlation between the interest rate

and mortality rate. The first two assumptions state that the forward mortality rate

for pure endowment is positive and bounded below from some time, which is satisfied

in reasonable models. The third assumption usually holds when there is a positive

correlation between the interest and mortality rate.

The forward mortality rate for pure endowment, hpet (s), present in the assumptions, is

not the object of interest in this example. In view of (4.8), it can be thought of as a

placeholder for f rt + fµt − gt.

Proposition A.2. Under Assumption A.1, there exists a T > 0 such that the forward

mortality rate for term insurances htit (s) given by (4.10) does not exist for s > T .

Proof. Combining (4.10) and (4.3), and then using (4.8) twice, we get that

e−
∫ T
t htit (s) dshtit (T ) = e−

∫ T
t (frt (s)+f

µ
t (s)−gt(s))dsfµt (T )

= e−
∫ T
t hpet (s) ds (hpet (T ) + gt(T )− f rt (T )) ,

and by integration we find

e−
∫ T
t htit (s) ds = 1−

∫ T

t
e−

∫ τ
t h

pe
t (s) ds (hpet (τ) + gt(τ)− f rt (τ)) dτ. (A.1)
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Since the left hand side must be positive for any T , we conclude that the condition∫ T

t
e−

∫ τ
t h

pe
t (s) ds (hpet (τ) + gt(τ)− f rt (τ)) dτ < 1 (A.2)

is necessary for the forward mortality rate for term insurances to be well-defined.

Under the first assumption, the forward mortality rate for pure endowment, hpet , defines

a distribution in a two-state Markov chain, and we recognise the integral
∫ T
t e−

∫ τ
t h

pe
t (s) ds

hpet (τ) dτ as a probability: Let Z be a stochastic variable that denotes the lifetime in a

survival model where death occurs with rate hpet (s) at time s. Then∫ T

t
e−

∫ τ
t h

pe
t (s) dshpet (τ) dτ = P (Z ≤ T | Z > t).

Also, under the second assumption the probability converges to 1,

P (Z ≤ T | Z > t)→ 1 for T →∞.

Consider now (A.2). Under the third assumption, gt(s) > f rt (s) for all s > t, there exists

ε > 0 and T ∗ ≥ t such that∫ T

t
e−

∫ τ
t h

pe
t (s) ds (gt(τ)− f rt (τ)) dτ > ε,

for all T > T ∗. This allows us to conclude, for a T > T ∗ large enough, such that

P (Z ≤ T | Z > t) > 1− ε, that∫ T

t
e−

∫ τ
t h

pe
t (s) ds (hpet (τ) + gt(τ)− f rt (τ)) dτ > P (Z ≤ T | Z > t) + ε > 1.

This contradicts (A.2), and the forward mortality rate for term insurances does not

exist.

We give an example of a model satisfying Assumption A.1. Let the 2-dimensional process

X satisfy

dX1(t) = (1−X1(t)) dt+ σ dW1(t),

dX2(t) = (1−X2(t)) dt+ σλdW1(t) + σ
√

1− λ2 dW2(t),

with X(0) = (1, 1)>. Let the interest rate and mortality rate be given by

r(t) = r0X1(t),

µ(t) = µ◦(t) +X2(t)− 1,

with parameters λ = 0.8, σ = 0.07 and base mortality

µ◦(t) = 5 · 10−4 + 7.5858 · 10−5 · 1.0914450+t.

That this model satisfies Assumption A.1 can be shown by solving relevant differential

equations.
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